6.

Lesson 4 Warm Up Quiz

Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1. (\mathbf{T}) F If $\mathbf{x} \in \mathbb{R}^n$ and $f(\mathbf{x}) = \mathbf{x}^T$, then $Dom(f) = \mathbb{R}^n$

2. T (F) If $f(\mathbf{x}, \mathbf{y}) = a\mathbf{x} + \mathbf{y}$, then the domain space of f is \mathbb{R}^n

3. The A vector $\mathbf{x} \in \mathbb{R}^n$ and its additive inverse $-\mathbf{x} \in \mathbb{R}^n$ have equal lengths, as computed with the euclidean norm.

4. (T) For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, the distance between \mathbf{x} and \mathbf{y} is given by $\|\mathbf{x} - \mathbf{y}\|_2$.

5. T (F) If $f(\mathbf{x}) = ||\mathbf{x}||_2$, then $\operatorname{Rng}(f) = (0, \infty) \subseteq \mathbb{R}$.

 (\mathbf{T}) F Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. If we add \mathbf{x} to the vector $\mathbf{y} - \mathbf{x}$ we get the vector \mathbf{y} .

7. T Fraction The vectors $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} -4\\4 \end{bmatrix}$ represents points on a line that passes through the origin.

8. T For vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\mathbf{x}^T + \mathbf{y}^T \in \mathbb{R}^n$

9. T (F) If \mathbf{u}, \mathbf{v} , and \mathbf{w} are non zero vectors in \mathbb{R}^2 , then $\mathbf{w} = c_1 \mathbf{u} + c_2 \mathbf{v}$ for some $c_1, c_2 \in \mathbb{R}$.

10. T For any scalar $c \in \mathbb{R}$ and any vector $\mathbf{x} \in \mathbb{R}^n$, we have $||c\mathbf{x}||_2 = c||\mathbf{x}||_2$.

11. T F The "length" of any vector in a \mathbb{R}^n , measured by the euclidean norm, is always positive.

12. (\mathbf{T}) F The vectors $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} -4 \\ 4 \end{bmatrix}$ represents points on a line that passes through the origin.

Multiple Choice For the problems below, circle the correct response for each question.

1. Recall that we used a spring in class modeled by the equation f(e) = ke + b where k = 17.57 N/m and b = 0.064N. Which of the following gives an ideal version of vector \mathbf{e} (where entries are measured in m) if we hang masses encoded in the mass vector

$$\mathbf{m} = \begin{bmatrix} 0.00 \\ 0.10 \\ 0.20 \\ 0.30 \\ 0.40 \end{bmatrix}$$

In this case, assume elongation measurements are given in meters (m) and are rounded to 4 digits to the right of the decimal place. Each entry of \mathbf{m} is measured in units of kilograms (kg). Remember the unit equation 1 N = $1\frac{\text{kg} \cdot \text{m}}{\text{s}^2}$. Also, sssume the acceleration due to gravity is 9.8 m/s².