
2.2 Vector Addition, Scalar Multiplication, and the Transpose

Definition 2.6: Scalar-vector multiplication

Let x œ Rn be a column vector and let a œ R be a scalar. We define the
scalar-vector multiplication as the vector

a x = a

S

WWWU

x1
x2
...

xn

T

XXXV
=

S

WWWU

ax1
ax2

...
axn

T

XXXV

where the ith coe�cient of this product is given by axi for all i œ {1, 2, ..., n}.

The scalar-vector multiplication ax œ Rn is a column vector. The left argument
of the product is a scalar a and the right argument is a vector x. We see that
scalar-vector multiplication is a function from R ◊ Rn to Rn.

EXAMPLE 2.2.1
Let’s return to our mass-spring system from Example 2.1.5 in which we measured
the relationship between the mass placed on the movable end of a spring and the
position of that end. The data vector mobs stored the masses hung on the free end
of our spring. Newton’s Second Law states that the force acting on an object is
calculated as the mass of that object (measured in kilograms) times the acceleration
of that object (measured in meters per second squared). Mathematically, we write
the scalar equation

f = m a = m ẍ(t)

where ẍ(t) = d
2

dt2 [x(t)] and x(t) is the position function for the object to which we
apply our force.

To find the force vector fcalc œ R3◊1 corresponding to the mass vector mobs,
we use scalar-vector multiplication. The ith entry of our force vector is given by
fi = ami, where a = 9.8m/s2 is the constant of acceleration due to earth’s gravity
(we assumed that we conducted this experiment on the face of the earth). Our
calculated force vector corresponding to the masses used in this experiment is given
by the scalar-vector product:

fcalc = 9.8 mobs = 9.8

S

U
0.00000
0.20010
0.40031

T

V =

S

U
0.00000
1.96098
3.92304

T

V
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EXAMPLE 2.2.2
Let’s study the mathematical relationship between the current running through a
resistor and the voltage across that resistor. Look back on Example 2.1.6 where we
collected the data vectors

vobs =

S

WWU

0.00
3.06
6.13
9.18

T

XXV , iobs =

S

WWU

0.00
2.81
6.38
9.57

T

XXV .

The experimental data seems to demonstrate a linear relationship. We superimpose
a “line of best fit” on the graph of our data points to test our intuition:

Although we see clear linear relationship, we notice that not all data points lie
exactly on this line. The discrepancies between our model and our observed data are
due to experimental errors. We discuss such errors in our development of techniques
to solve least-squares problems. In fact, the equation for the line of best fit that you
see in this diagram comes from the solution to a least-squares problem. For now,
we use a multimeter to measure the resistance of our resistor in our experiment and
find r = 0.990k� = 990�. We substitute this value for r into the vector version of
Ohm’s Law, given by

vobs = r icalc (2.2)

where vobs œ R4 is the vector of measured voltages across our resistor and r œ R
is measured resistance for the resistor in our experiment. We calculate the vector
icalc œ R4 using scalar-vector multiplication to find

icalc = 1
.990

S

WWU

0.00
3.06
6.13
9.18

T

XXV =

S

WWU

0.00
3.09
6.19
9.27

T

XXV .

We expect approximations to be slightly di�erent from our observed currents stored
in iobs due to experimental error.
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We can interpret scalar-vector multiplication geometrically to represents the
“stretching” of a vector.

EXAMPLE 2.2.3
Consider the vector x œ R2 define by

x =
5
2
1

6

Suppose we are using a vector model in which individual vectors represents sin-
gle points in R2. We make this vector longer or shorter by multiplying by the
appropriate scalar using the scalar-vector multiplication

–x

For example, suppose that

x1 = 2 · x =
5
4
2

6
, x2 = ≠1 · x =

5
≠2
≠1

6
, x3 = ≠3 · x =

5
≠6
≠3

6
,

We can graph each of these vectors on the same axis.

We see that changing the value of the scalar – scales the first and second coordinates
of the vector x by the same value. This e�ectively shifts the original point along
the line 2y = x. As we will see, we call the line 2y = x the span of the vector x.
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Definition 2.7: Column Vector Addition

Given two column vectors x, y œ Rn, we define an operation on these two
vectors known as column vector addition as

x + y =

S

WWWU

x1
x2
...

xn

T

XXXV
+

S

WWWU

y1
y2
...

yn

T

XXXV
=

S

WWWU

x1 + y1
x2 + y2

...
xn + yn

T

XXXV

When summing two vectors x œ Rn and y œ Rm, we must have that
n = m. In other words, we can only sum vectors that have the same
number of rows and the same number of columns. The ith coe�cient of
the sum of the vectors x and y is simply the sum of the ith coe�cients of
x and y, for i = 1, 2, ..., n.

Notice that the sum of two column vectors x, y œ Rn is also a column vector
x + y œ Rn. Thus, we can conclude that column vector addition is a relation from
Rn ◊ Rn to Rn. Column vector addition can be used to combine information from
two column vectors to form a new column vector.

EXAMPLE 2.2.4
Recall our triangle from example 2.1.1. Recall that the three vertices of our triangle
were given by We can use column vectors to define the vertices of a triangle in the
plane. For example, consider the three column vectors

v1 =
5
0
0

6
, v2 =

5
≠1

1

6
, v3 =

5
2
1

6
.

Suppose we want to create a second triangle with three new vertices by shifting the
vertices v1, v2, v3 to the left by one unit and down by two units. We can accomplish
this using vector addition. In particular, let

s =
5
≠1
≠2

6

Then, if we define xi = vi + s we see

x1 =
5
≠1
≠2

6
, x2 =

5
≠2
≠1

6
, x3 =

5
1

≠1

6
.

Notice that the vertices of our new triangle are indeed shifted left one and down
two compared with our original vertices.

x

y

•

• •
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EXAMPLE 2.2.5
Look back at Example 2.1.5. The vector x œ R3◊1 encoded the position of the
movable end of the spring as measured using our experiment apparatus. However,
when studying the relationship between the internal force of the spring, we want
to focus on the displacement of the moveable end. That is, we want calculate the
di�erence between the position of the movable end under our various forces and the
initial position under no force. We can use scalar-vector multiplication to encode
this data as a displacement vector:

u = xobs ≠ x0 =

S

U
1.040
0.932
0.820

T

V ≠

S

U
1.040
1.040
1.040

T

V =

S

U
0.000

≠0.108
≠0.220

T

V

In this equation, we have x0 œ R3◊1 is the vector containing entries equal to the
initial position 1.040m. The ith coe�cient of vector u gives the di�erence between
the initial position of the free end of the spring with no mass and end the end
position of the spring when mass mi is attached.

EXAMPLE 2.2.6
In studying the physical properties of mass-spring systems, we often use Hooke’s
law which states that the internal forces of a spring are directly proportional to the
elongation of the spring. We can state this in vector form as follows:

f = ≠ku

where k is the specific spring constant for the spring we use in our experiment, u is
the calculated displacement vector from Example 2.2.5 and f is the negative of the
calculated force vector from Example 2.2.1.

Note that the spring constant of a spring is a measurement of sti�ness. The
higher the spring constant, the harder it is to pull the spring apart. We can use
excel’s trend line chart option to get a formula for the value of k in this experiment
(see the figure below):
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There are a number of algebraic properties that hold for these operations on
column vectors.

Theorem 5: Algebraic Properties of Vector Addition and Scalar
Multiplication

Let x, y, z œ Rn◊1 and a, b œ R. Then, all of the following are properties
of column vector addition:

1. Commutativity of vector addition: x + y = y + x

2. Associativity of vector addition: x + (y + z) = (x + y) + z

3. Additive identity: x + 0 = 0 + x = x

4. Additive inverses: x + ≠x = ≠x + x = 0 with ≠x = ≠1x

5. Distributivity over vector addition: a(x + y) = ax + ay

6. Distributivity over scalar addition: (a + b)x = ax + bx

7. Associativity of scalar multiplication: a (bx) = (ab)x

8. Multiplicative identity of scalar multiplication: 1x = x

Prove each one of these using a step-by-step rigorous format.

Proof. To prove each of these statements, we begin by letting x, y, z œ Rn◊1 and
a, b œ R. We will then work through each property, one-by-one, to reach our desired
conclusions. Let’s start with commutativity. Consider

x + y =

S

WWWU

x1 + y1
x2 + y2

...
xn + yn

T

XXXV

However, by definition we know that xi, yi œ R for all i œ {1, 2, ..., n} and thus we
know that xi + yi = yi + xi since addition of real numbers is commutative. Since
this holds true for all index values i, we see that

x + y =

S

WWWU

x1 + y1
x2 + y2

...
xn + yn

T

XXXV
=

S

WWWU

y1 + x1
y2 + x2

...
yn + xn

T

XXXV
= y + x.

Next, let’s prove associativity. Consider

x + (y + z) =

S

WWWU

x1
x2
...

xn

T

XXXV
+

S

WWWU

y1 + z1
y2 + z2

...
yn + zn

T

XXXV
=

S

WWWU

x1 + (y1 + z1)
x2 + (y2 + z2)

...
xn + (yn + zn)

T

XXXV
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Again, we can focus on the scalar addition xi+(yi+zi) for any choice i œ {1, 2, ..., n}.
We know that addition of real numbers is associative and thus we have

xi + (yi + zi) = (xi + yi) + zi.

Since this holds for all index values we see

x + (y + z) =

S

WWWU

x1 + (y1 + z1)
x2 + (y2 + z2)

...
xn + (yn + zn)

T

XXXV
=

S

WWWU

(x1 + y1) + z1
(x2 + y2) + z2

...
(xn + yn) + zn

T

XXXV
= (x + y) + z

and we have confirmed that vector addition is associative.
We continue by proving our desired property for the additive identity 0 œ Rn.

Consider

x + 0 =

S

WWWU

x1
x2
...

xn

T

XXXV
+

S

WWWU

0
0
...
0

T

XXXV
=

S

WWWU

x1 + 0
x2 + 0

...
xn + 0

T

XXXV

Since each coe�cient xi + 0 = xi we conclude that x + 0 = x. By similar reasoning
we can conclude that x = 0 + x which completes our proof.

Each of the rest of the Algebraic Properties of Vector Addition and Scalar Mul-
tiplication can be proven using the same types of arguments outlined above. The
reader is encouraged to complete these proofs as part of your exercise set associated
with this section.

One of the major take away points from these algebraic properties is that vectors
in Rn borrow much of their algebraic structure from the real numbers. As we see
in the proofs above, this is a direct consequence of the fact that each coe�cients
lives in the real numbers and thus individual operations on each coe�cient satisfy
all algebraic properties of real numbers. One of the most fundamental and power-
ful attributes of vectors is the ability to represent numerous operations in a very
compact form. For given vectors x, y œ Rn, we see that the vector-vector addition
x + y represents n di�erent additions being executed simultaneously. Similarly, For
vector x œ Rn and scalar a œ R, the scalar-vector multiplication ax represents a
total of n scalar-scalar multiplications. With this in mind, think back to arithmetic.

If we were required to write down each operation one-by-one for vectors of size
n = 100, this means we would have to track 100 di�erent operations and carry out
each operation individually. However, vector notation and vector operations allow
us to suppress the details of these calculations and instead focus on producing
relevant new vectors. This is a subtle yet beautiful property of linear algebra: we
define multidimensional data using individual symbols, create relevant operations
to manipulate this data and use very slick notation to hide the arithmetic details
and focus on the larger structures to accomplish our goals.
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Definition 2.8: The Transpose of a vector

Let x œ Rn be a column vector. We define the transpose of x as the
1 ◊ n row vector

xT =
#
x1 x2 · · · xn

$

where the entry in the ith row of x becomes the entry in the ith column
of xT .

On the other hand, let y œ R1◊n be a row vector. The transpose of
y is the n ◊ 1 column vector

yT =

S

WWWU

y1
y2
...

yn

T

XXXV

where the coe�cient in the kth column of y becomes the entry in the kth
row of yT .

When taking the transpose of a vector, we switch the row and column indices. This
implies that the transpose of row vectors are column vectors while the transpose of
column vectors are row vectors.

Theorem 6: Algebraic Properties of Vector Transposes

Let x, y œ Rn◊1 and a, b œ R. Then, all of the following are properties of
column vector addition:

i.
!
xT

"T = x

ii. (x + y)T = xT + yT

iii. (a x)T = a xT

Proof. Let x, y œ Rn and a œ R. We begin by proving our first property. Consider.

!
xT

"T =

Q

cccca

S

WWWU

x1
x2
...

xn

T

XXXV

T
R

ddddb

T

=
!#

x1 x2 · · · xn

$"T =

S

WWWU

x1
x2
...

xn

T

XXXV
= x.

This is exactly what we wanted to show.
We continued by proving that the transpose of the sum of vectors is the sum of
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the transposes of each vector. Consider

(x + y)T =

Q

ccca

S

WWWU

x1
x2
...

xn

T

XXXV
+

S

WWWU

y1
y2
...

yn

T

XXXV

R

dddb

T

=

Q

ccca

S

WWWU

x1 + y1
x2 + y2

...
xn + yn

T

XXXV

R

dddb

T

=
#
x1 + y1 x2 + y2 · · · xn + yn

$

=
#
x1 x2 · · · xn

$
+

#
y1 y2 · · · yn

$

= xT + yT
.

This is what we wanted to show.
Finally, let’s establish that scalar multiplication goes through the transpose

operation:

(ax)T =

Q

ccca
a

S

WWWU

x1
x2
...

xn

T

XXXV

R

dddb

T

=

Q

ccca

S

WWWU

ax1
ax2

...
axn

T

XXXV

R

dddb

T

=
#
ax1 ax2 · · · axn

$

= a
#
x1 x2 · · · xn

$

= axT
.

Here we are done with our proof.

Although the above theorem and proof are stated in terms of column vectors,
the same properties hold if we assume that x, y are row vectors. As we will see
later, the transpose operation is extremely helpful in re-interpreting dot products
between vectors as matrix-matrix multiplication. Transposes are also helpful in
formulating outer-products between vectors.
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Lesson 4 Exercises: Vectors Operations

1. Let x, y, z œ R4 be given by

x =

S

WWU

2
3

≠1
6

T

XXV , y =

S

WWU

4
0

≠2
≠1

T

XXV , z =

S

WWU

≠1
1
0

≠5

T

XXV ,

Use these vectors to find each of the following:

a. x + z
b. xT + yT

c. y + zT

d. 2x ≠ 1y

2. Prove Theorem 6: The Algebraic Properties of Vector Addition and Scalar
Multiplication for vectors in Rn

3. Prove Theorem 7: The Algebraic Properties of Vector Transposes in Rn

4. Create a vector model for some data that you can collect in your daily life.
Discuss how to use scalar-vector multiplication and vector addition to analyze
this data.

5. Analyze all possible geometric transformations of the vertices of a triangle
that can be accomplished using only scalar-vector multiplication and vector
addition.
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