
1.6 Relations and Functions
STEM professionals working in industry, government or academia often try to

identify or create relationships between two di�erent types of quantitative data.
For example, digital cameras relate the intensity of light to voltages in an electric
circuit. Linear Algebra provides elegant theoretic results about linear functions
between two vector spaces. Because many relationships that exist in the real-world
can be simplified into linear functions, we can apply the tools of linear algebra to
solve real-world problems

When studying real-world problem, we often collect quantitative data. Suppose
we measure quantity a from an experiment related to one aspect of our problem.
At same time, we measure a di�erent quantity b. We use an ordered pair (a, b) to
indicate that a is related to b. This framework sets the foundation for the creation
of very general relations between any objects. We begin our study of relations by
defining the set of all possible combinations of data taken from two di�erent sets.

Definition 1.4: Cross Product of Sets

Let A and B be sets. The cross product of A and B is the set

A ◊ B = {(a, b) : a œ A and b œ B} .

The notation A ◊ B is read “A cross B.”

Elements of the cross product of sets take the form (a, b), known as an ordered-
pair formed from elements a œ A and b œ B. The ordered pair (a, b) has two
coordinates written inside the parenthesis: the first coordinate a written on the
left of the comma and the second coordinate b written on the right of the comma.
We say two ordered pairs (a, b) and (x, y) are equal i� a = x and b = y. Changing
either coordinate of a given ordered pair (a, b) yields a di�erent ordered pair.

The cross product A◊B is the set of all possible ordered pairs that can be made
by choosing first coordinates from the set A and second coordinates from the set
B. We can also refer to the cross product as the Cartesian Product of two sets. Be
very careful: the cross product between two sets is di�erent from the cross product
between vectors that you studied in calculus.
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EXAMPLE 1.6.1
Suppose we are studying the following real-world problem: How do campaign contri-
butions from corporate donors a�ect the voting record of US Senators on corporate
sponsored bill? In order to study this problem, we will map voting records into the
space of numbers. To consider all the possible ways to do this, we look at the cross
product between sets A = {≠1, 0, 1} and B = {Nay, Abstain, Yay}. Then

A ◊ B = {(≠1, Nay), (≠1, Abstain), (≠1, Yay),
(0, Nay), (0, Abstain), (0, Yay),
(1, Nay), (1, Abstain), (1, Yay), }.

This cross product gives an exhaustive list of all possible ways to combine the
numbers ≠1, 0, 1, with the voting record of any senator on one bill.

EXAMPLE 1.6.2
Imagine we were some of the first humans to come up with a system to organize
the alphabet. In particular, imagine we are creating the first dictionary ever made.
Recall the set U of upper case english letter from Example 1.5.1. We will create
our ordering of elements in U by relating the upper case letters to numbers in the
set

[26] = {x œ N : 1 Æ x Æ 26}

We begin our study with a brute force (and naive) approach of listing all possible
ordered pairs in the set U ◊ [26]. This set has 262 di�erent ordered pairs in the
form (�, n), where � œ U and n œ [26]. This cross product is the set of all possible
ways to combine capital letters with the natural numbers from 1 to 26.

We can generalize the definition of the cross product of two sets. In particular,
the cross product of three sets A, B, C is defined as the set of all order triplets:

A ◊ B ◊ C = {(a, b, c) : a œ A, b œ B, c œ C}.

For n œ N , we define the cross product of n sets, A1, A2, ..., An, as

A1 ◊ A2 ◊ · · · An = {(a1, a2, ..., an) : ai œ Ai for all i œ {1, 2, ..., n}}.

Each element of this cross product is known as an ordered n-tuple. Two ordered
n-tuples (a1, a2, ..., an) and (x1, x2, ..., xn) are equal if and only if ai = xi for every
i = 1, 2, ..., n.

EXAMPLE 1.6.3
In Vector Calculus, we study functions whose domain is a subset of R◊R◊R and
whose range is contained in R. The set

R ◊ R ◊ R = {(x, y, z) : x, y, z œ R}.

This is the set of all possible ways to form a 3≠tuple, where each coordinate is some
real number.

The cross product is a formal mathematical tool used to discuss the set of all
possible combinations that can be made when creating order pairs. Most of the
time, we don’t want to consider the entire set of combinations, since this often is
not useful in the modeling process. Instead, when creating useful mathematical
models, we focus on a select few ordered pairs that encode relationships between
data that we’ve collected on our problem. From this perspective, the purpose of
defining the cross product of sets is to establish the set of all possible choices from
which more specific combinations will be chosen.
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Definition 1.5: Relation

Let A and B be sets. The set R is a relation from A to B i�

R ™ A ◊ B.

A relation from A to itself is called a relation on A. If (a, b) œ R, we
write a R b and say that a is related to b. If (a, b) /œ R, then a⇢⇢R b.

EXAMPLE 1.6.4
Suppose we are designing a tra�c control systems. We want to know: How can
we use symbols to direct tra�c? To address this problem, we introduce a relevant
mathematical relation. Let A = { , } be the set of red and green colored circles
and B = {STOP, GO} be the set of actions desired for drivers. Then

A ◊ B = {( , STOP), ( , GO), ( , STOP), ( , GO)}

We decide on the relation

R = {( , STOP), ( , GO)}

Notice that R µ A ◊ B. In this case, we’ve used the the set theoretic version for
relations to establish a solution to our tra�c control problem.

EXAMPLE 1.6.5
The touch-tone telephone is well known in the United States. Prior to the existence
of Smart Phones, a physical telephone that contain this technology was a ubiquitous
part of the US telecommunications infrastructure. The dial pad on many of today’s
smart phones contains a digital image of the same interface. Regardless of whether
the faceplate is a physical or digital object, each button indicates special properties.
The relation implicit in this technology is as follows:

D ™ N ◊ U,

D = {(2, A), (2, B), (2, C),(3, D), (3, E), (3, F), ..., (9, Y), (9, Z)}.

where U is the set of upper case english letters discussed in Example 1.5.1 and
N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Notice, there are 26 di�erent elements in R. Also
notice that (1, G) /œ D and thus D is a proper subset of N ◊ U .

This image is taken from an iOS dial
pad. Notice the relation implicit in
this technology.
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EXAMPLE 1.6.6
Consider the real-world problem: How can we design a machine to perform calcula-
tions between numbers? The first generation of scientists to focus on this problem
realized that all data could be encoded using a two letter alphabet,{0, 1}. The
symbol 0 is called logic 0 and the symbol 1 is known as logic 1 (for more about
this, Google search“Boolean Algebra”). Claude Shannon, the father of Information
Theory and the first person to draw connections between formal mathematical logic
and electric circuits, realized that electricity could be used encode the value of a
two letter alphabet into a machine. In particular, given a high voltage H, and a
Low voltage L, an explicit relation could be established between the fundamental
unit of encoding and physical measurements of electric current. For example, we
could define a relation, known as the active high relation where

AH = {(0, L), (1, H)}.

This corresponds with a digital computer in which high voltages stored in the
computer’s hardware are interpreted as logic 1 while low voltages are interpreted
as logic 0. On the other hand, the relation known as active low has the opposite
orientation:

AL = {(0, H), (1, L)}.

In this case, high voltages correspond to logic 0 while low voltages to logic 1.
It is worth noting that the actual physical values of H and L vary greatly

depending on the fabrication process of the digital hardware. For example, the
Texas Instrument TTL (Transistor-Transistor Logic) family has a H value of 3.3
Volts and a L value of 0.5 Volts.
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This general set theoretic definition of a relation is powerful because we can state
any type of correspondence in terms of a set of ordered pairs. By requiring that
a relations is any subset of a cross product, we guarantee that any set of ordered
pairs is a relation. When discussing relations, it is very helpful to have names for
the sets that comprise the first- and second-coordinates of the ordered pairs in that
relation.

Definition 1.6: Domain, Range and More

Let A and B be sets and let R be a relation from A to B. The domain
space of relation R is the set A. The domain of the relation R is the set

Dom (R) = {x œ A : there is a y œ B such that (x, y) œ R}.

The codomain of the relation R is the set

Codom (R) = B.

The range of the relation R is the set

Rng (R) = {y œ B : there is a x œ A such that (x, y) œ R}.

The domain space of R is the set from which first coordinates of any ordered
pair in R are chosen. The domain of relation R is the set of all first coordinates
of the ordered pairs in R. The codomain of R is the set from which the second
coordinates of any ordered pair (a, b) œ R are chosen. The ranges of R is the set of
all second coordinates of the ordered pairs in R.

EXAMPLE 1.6.7
Looking back at the “Dial Pad” relation from Example 1.6.5 we see

Domain Space(D) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},

Dom(D) = {2, 3, 4, 5, 6, 7, 8, 9},

Codom(D) = U,

Rng(D) = U.

In this case, U represents the set of upper case letters in the English alphabet, as
defined in Example 1.5.1.

EXAMPLE 1.6.8
Consider the following relation:

E =
;

(x, y) œ R ◊ R : x
2

256 + y
2

25 Æ 1
<

.

If we graph this relation using the Cartesian plane, we see an ellipse. Moreover, we
can find

Domain Space(E) = R
Dom(D) = [≠16, 16] µ R

Codom(D) = R,

Rng(D) = [≠5, 5] µ R.
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EXAMPLE 1.6.9
Let’s consider the relation that Starbucks Co�ee defines between the names for the
sizes of the drinks and the the volume of a Starbucks drink. Below we list this
relation completely:

{(Short, 8), (Tall, 12), (Grande, 16), (Vente, 20), (Vente, 24)}

There are a number of ways to visualize a relation. For example, with the element
enumeration method, we list all the elements of the ordered pair as seen above. We
could also list the elements of the relation in a two-column table.

Size Name Fluid Ounces
Short 8
Tall 12

Grande 16
Vente 20
Vente 24

Yet a third method would be to display the relation using an arrow diagram.

Short

Tall

Grande

Vente

8

12

16

20

24

In an arrow diagram, each unique element in the domain is represented by a single,
labeled dot. Similarly each unique element in the range is represented by a single,
labeled dot. Arrows are drawn from domain elements to range elements if and only
if the corresponding ordered pair is found in the relation.
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We now construct a formal definition of a function by refining the concept of a
relation. Recall that a function is a special type of correspondence where by each
input value (each element in the domain) corresponds to a unique output value
(one and only one element in the Codomain). The following definition provides a
set theoretic definition of a function.

Definition 1.7: Function

A function from A to B is a relation f from A to B such that both of
the following hold

i. Dom (f) = A

ii. if (x, y) œ f and (x, z) œ f , then y = z.

We denote the phrase “f is a function from A to B” with the notation
f : A æ B. If B = A, we say that f is a function on A.

From our definition above, we see that if f : A æ B, then f ™ A ◊ B. In other
words, all functions are relations. However, not all relations are functions.

EXAMPLE 1.6.10
One of the most famous functions used in computer science is given by a mapping
between the set of nonnegative integers between 0 and 2k ≠ 1 for some k œ N and
the set of k digit binary integers. For example, we see can write the decimal number
6 as a 3≠bit binary integer using the following realization:

6 = 1 · 22 + 1 · 21 + 0 · 20 = 110

We can also convert the decimal integer 13 into a 4≠bit binary integer using the
map suggested above:

13 = 8 + 4 + 1 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 1101.

In other words, if

Nk = {n œ Z : 0 Æ n Æ 2k ≠ 1},

Bk = {bkbk≠1 · · · b2b1 : bi = 0 or bi = 1 for each i = 1, 2, ..., k}.

computer scientist establish the binary representation of a number as a subset of
Nk ◊ Bk where the map is defined as

n = bk · 2k≠1 + bk≠1 · 2k≠2 + · · · + b2 · 21 + b120
.
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EXAMPLE 1.6.11
When you take a black and white picture with a digital camera, you capture analog
information (a collection of fluctuating light waves in the frame of your picture) and
transform these waves into digital information (a collection of binary digits inside a
computer). The technology inside the camera focuses light from your camera lens
onto a digital image sensor. These sensors provide a grid of tiny photosites, each
one called a pixel. Each pixel is a light-sensitive electronic device that converts
photons from incoming light into an analog voltage level that can then be digitized.
Once this digital information is stored, your camera must have a way to convert
the digital information of a picture into an image that you can recognize.

In this example, we study the gray scale. The gray scale is a standard color
model that indicates exactly how binary numbers are translated into shades of gray
corresponding to luminous intensities captured at each pixel. To begin our study,
we note that for each pixel, our camera has set a color depth (also known as bit
depth). This is the number of bits dedicated to each pixel. Below, we show gray
scales corresponding to 1≠, 2≠, 3≠ and 4≠ bit depth models.

We can list all of the possible representations of light using our knowledge of
binary representations. Once we’ve done so, we should determine the mapping
between each binary number and the corresponding intensity of light. Below is a
fictitious example of one way to do this for a black and white image:

In the above diagrams, we’ve presented the stored binary number in decimal
form. However, when these values are stored in a digital camera’s memory, these
exist as voltage values representing the corresponding binary numbers. A 4≠bit
gray scale indicates that each pixel has 4 di�erent voltage values used to store the
intensity of light sensed at that pixel. For more about this, see the wikipedia articles
on “digital camera,” “color model,” “color depth” and “luminous intensity.”
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There are a number of very popular sets of functions that show up in numerous
fields in mathematics. These sets of functions are used in many of the applications
we present in this text. Below we define each of these for future reference:

Definition 1.8: Important Sets of Functions

Let I ™ R. Then

Pn(I) = {f : f : I æ R and f is a polynomial with deg (f) Æ n for n œ N}.

C
(Œ)(I) = {f : f : I æ R and f has continuous derivatives of all orders on I}.

C
(p)(I) = {f : f : I æ R and f has continuous pth derivative for p œ N on I}.

C
(1)(I) = {f : f : I æ R and f has continuous first derivative on I}.

C(I) = {f : f : I æ R and f is a continuous on I}
F (I) = {f : f : I æ R}.

EXAMPLE 1.6.12
On the other can, if we want to define the set of continuous functions on the closed
interval [≠1, 1], we might declare

C([≠1, 1]) = {f : f is a continuous function with domain [≠1, 1]}.

Again, we choose our set name to be suggestive its significance and we use the
variable name f since many readers will probably associate functions with this
variable.
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EXAMPLE 1.6.13
Let C

(1)([≠1, 1]) be the set of continuous, di�erentiable, real-valued functions de-
fined on the interval [≠1, 1] whose derivatives are also continuous on that inter-
val. Let C([≠1, 1]) be the set of continuous functions. We want to show that
C

(1)([≠1, 1]) ™ C([≠1, 1]).

Suppose that f œ C
(1) ([≠1, 1]).

To prove that f is continuous, we need to show that lim
xæa

f(x) = f(a) for all a œ
[≠1, 1]. We will establish this fact by showing that the di�erence between f(x) and
f(a) goes to zero as x approaches a.

Suppose that a œ [≠1, 1]. Since f(x) is di�erentiable at a, we know that

f
Õ(a) = lim

xæa

f(x) ≠ f(a)
x ≠ a

exists. Moreover, assuming that x ”= a, we know that

f(x) ≠ f(a) = f(x) ≠ f(a)
x ≠ a

(x ≠ a).

Because the limit of a product is equal to the product of the limits (see Appendix
B for more), we know

lim
xæa

[f(x) ≠ f(a)] = lim
xæa

f(x) ≠ f(a)
x ≠ a

(x ≠ a),

= lim
xæa

f(x) ≠ f(a)
x ≠ a

· lim
xæa

(x ≠ a),

= f
Õ(a) · 0 = 0

Finally, we see that f(x) + 0 = f(a) + f(x) ≠ f(a), we have

lim
xæa

f(x) = lim
xæa

[f(a) + f(x) ≠ f(a)] ,

= lim
xæa

[f(a)] + lim
xæa

[f(x) ≠ f(a)] ,

= f(a) + 0 = f(a).

Therefore f is continuous and f œ C([≠1, 1]).
By definition, C

(1)([≠1, 1]) ™ C([≠1, 1]).
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Lesson 2: Relations and Functions- Suggested Problems:

1. Convert each of the following decimal integers into binary representation

A. Base 10 representation: 104
B. Base 10 representation: 255
C. Base 10 representation: 917
D. Base 10 representation: 3
E. Base 10 representation: 12, 781

2. Convert each of the following binary numbers into decimal representation

A. Base 2 representation: 1001101
B. Base 2 representation: 1101
C. Base 2 representation: 1111111
D. Base 2 representation: 101
E. Base 2 representation: 1001101110101

3. Identify possible options for the domain space, domain, codomain and range
for each of the following relations:

A. {(x, y) œ R ◊ R : x = sin(y)}
B.

Ó
(x, y) œ R ◊ R : y = e

≠x
2
Ô

C.
)

(x, y) œ R ◊ R : x
2 + y

2 = 25
*

D.
;

(x, y) œ R ◊ R : y = |x|
x

for x ”= 0
<

4. Assuming the domain of each of the following function is the largest possible
subset of R, find the domain and range of:

A. f(x) = x
2 ≠ 7x + 12

x ≠ 4
B. f(x) =

Ô
15 ≠ x

C. f(x) =
Ô

x + 4 +
Ô

≠4 ≠ x

D. f(x) =
----
x + 4

2

---- +
----
x ≠ 5

2

----

5. For the lower-case and upper-case letters, decompose the USA ASCII Code
Chart into a composition of two functions:

f :U æ N,

g :N æ B7

where B7 is the set of 7≠bit binary integers.

6. Prove that Pn([0, 1]) ™ C
(Œ)([0, 1]).

7. Prove that C
(Œ)([0, 1]) ≠ Pn([0, 1]) ”= ÿ.

8. Generate examples of relations you use in daily life not included in the Lesson
2 notes. Identify the domain space and codomain for each relation. Determine
if the relation is a function or not.

9. Generate examples of functions you use in daily life not included in the Lesson
2 notes. Identify the domain space and codomain for each function.
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