Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false. After you've chosen your answer, mark the appropriate space on your Scantron form. Notice that letter A corresponds to true while letter B corresponds to false.

1.	T	F	$\mathbb{Z}\subseteq \mathbb{Q}$
2.	Т	F	$0 \in \mathbb{N}$
3.	T	F	$\mathbb{R} \not\subseteq \mathbb{Z}$
4.	T	F	$\sqrt{2} otin \mathbb{Q}$
5.	T	F	$0 \in \mathbb{Z}$
6.	Т	F	The set of nonnegative integers is equal to the set of positive integers.
7.	Т	F	$\mathbb{Q}\subseteq\mathbb{N}$

Multiple Choice For the problems below, circle the correct response for each question.

1. Let A and B be sets. What does it mean if we say that A is a subset of B?

- A. Some element x in A is also an element of B.
- B. A is an element of B.
- C. Every element x in A is contained in some element y of B.
- **D.** Every element x in A is also an element of B.
- E. Every element y in B is also an element of A.

2. For sets A and B, the statement "If $x \in A$, then $x \in B$ " is written using which of the following?

A. $A \leq B$ B. $B \subseteq A$ C. A = B D. $A \subseteq B$ E. $A \neq B$

Free Response

1. Let $A = \{n \in \mathbb{N} : n - 4 < 10\}$ and $B = \{m \in \mathbb{N} : m^2 \le 169\}$. Prove that A = B.

Solution: Recall that for a direct proof that A = B, we must show that:

I. $A \subseteq B$

II. $B \subseteq A$

Moreover, we recall from lesson 1 that in order to verify the subset relation, we can use the following direct proof method:

Direct Proof of $A \subseteq B$ Proof: Suppose $x \in A$. \vdots Therefore, $x \in B$. By definition, $A \subseteq B$.

Part I: We begin our formal proof by showing $A \subseteq B$:

Proof. Suppose $x \in A$. Then, we can immediately conclude

$x \in A$	\implies	$x \in \mathbb{N}$ and $x - 4 < 10$
	\implies	$x \in \mathbb{N}$ and $x < 14$
	\implies	$x \in \mathbb{Z}$ and $0 < x < 14$
	\implies	$x \in \{1, 2, 3, 4,, 13\}$
	\implies	$x^2 \in N$ and $1 < x^2 \le 169$
	\Rightarrow	$x\in B$

Thus, we've shown that if $x \in A$, then $x \in B$ and we conclude that $A \subseteq B$ as desired.

Part II: We continue our formal proof by showing $B \subseteq A$:

Proof. Suppose $x \in B$. Then,

$x \in B$	\implies	$x \in \mathbb{N}$ and $x^2 \leq 169$
	\implies	$x \in \mathbb{N}$ and $x \leq 13$
	\implies	$x \in \mathbb{N}$ and $x < 14$
	\implies	$x \in N$ and $x - 4 < 10$
	\implies	$x \in A$

We conclude that $B \subseteq A$ since every element of B is also an element of A.

Given parts I and II above, we know that A = B.