Answers
 Lesson 1 Warm Up Quiz

Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false. After you've chosen your answer, mark the appropriate space on your Scantron form. Notice that letter A corresponds to true while letter B corresponds to false.

1. (T) F $\mathbb{Z} \subseteq \mathbb{Q}$

2. T F $0 \in \mathbb{N}$
3. (T) F $\mathbb{R} \nsubseteq \mathbb{Z}$
4. T) F $\sqrt{2} \notin \mathbb{Q}$
5. (T) F $0 \in \mathbb{Z}$
6. T F The set of nonnegative integers is equal to the set of positive integers.
7. $\mathrm{T} \quad \mathrm{F} \quad \mathbb{Q} \subseteq \mathbb{N}$

Multiple Choice For the problems below, circle the correct response for each question.

1. Let A and B be sets. What does it mean if we say that A is a subset of B ?
A. Some element x in A is also an element of B.
B. A is an element of B.
C. Every element x in A is contained in some element y of B.
D. Every element x in A is also an element of B.
E. Every element y in B is also an element of A.
2. For sets A and B, the statement "If $x \in A$, then $x \in B$ " is written using which of the following?
A. $A \leq B$
B. $B \subseteq A$
C. $A=B$
D. $A \subseteq B$
E. $A \neq B$

Free Response

1. Let $A=\{n \in \mathbb{N}: n-4<10\}$ and $B=\left\{m \in \mathbb{N}: m^{2} \leq 169\right\}$. Prove that $\mathrm{A}=\mathrm{B}$.

Solution: Recall that for a direct proof that $A=B$, we must show that:
I. $A \subseteq B$
II. $B \subseteq A$

Moreover, we recall from lesson 1 that in order to verify the subset relation, we can use the following direct proof method:

Direct Proof of $A \subseteq B$

Proof:
Suppose $x \in A$.
:
Therefore, $x \in B$.
By definition, $A \subseteq B$.

Part I: We begin our formal proof by showing $A \subseteq B$:
Proof. Suppose $x \in A$. Then, we can immediately conclude

$$
\begin{array}{llc}
x \in A & \Longrightarrow & \\
& \Longrightarrow & \begin{array}{l}
x \in \mathbb{N} \text { and } x-4<10 \\
x \in \mathbb{N} \text { and } x<14 \\
\\
\\
\\
\\
\\
\\
\\
\end{array} \quad \begin{array}{c}
x \in \mathbb{Z} \text { and } 0<x<14 \\
x
\end{array} \\
x \in\{1,2,3,4, \ldots, 13\} \\
& x^{2} \in N \text { and } 1<x^{2} \leq 169 \\
& x \in B
\end{array}
$$

Thus, we've shown that if $x \in A$, then $x \in B$ and we conclude that $A \subseteq B$ as desired.
Part II: We continue our formal proof by showing $B \subseteq A$:
Proof. Suppose $x \in B$. Then,

$$
\begin{array}{lll}
x \in B & \Longrightarrow & x \in \mathbb{N} \text { and } x^{2} \leq 169 \\
& \Longrightarrow & x \in \mathbb{N} \text { and } x \leq 13 \\
& \Longrightarrow & x \in \mathbb{N} \text { and } x<14 \\
& \Longrightarrow & x \in N \text { and } x-4<10 \\
& \Longrightarrow & x \in A
\end{array}
$$

We conclude that $B \subseteq A$ since every element of B is also an element of A.
Given parts I and $I I$ above, we know that $A=B$.

