
1.5 Sets and Operations on Sets
Most results in applied linear algebra depend on a formal rigorous logical struc-

ture known as set theory. In this section, we study sets and introduce a general
framework to state the many concepts and propositions we will need in applied
linear algebra.

In most lower-division calculus textbooks, functions are introduced using non-
set theoretic terminology. In such books, functions are referred to as a mappings
that have at most three independent variables and a single, real-valued output. The
goal of first-year calculus is to introduce the formal mathematical theory used to
analyze the behavior of functions using only a algebraic and graphical descriptions
of the relationship between input and output variables. However, using set theory,
we formalize the definition of a function. Instead of confining ourselves to maps
whose range is contained in the real number line, we instead generalize functions as
relationships between sets that satisfy important conditions. Before we do so, we
need to build intuitions about sets.

A set is a collection of objects, known as elements of a set. To define a set of
elements, we can use two di�erent, but related, approaches:

i. the element enumeration method

ii. set-builder notation

When using the element enumeration method to define a set, we list all
elements of the set, one by one. We use the left bracket symbol“{” to represent the
start of our list of elements and the right bracket symbol “}” to represent the end
of our list. All objects that appear between these brackets are elements of our set.
Commas represent the boundary between separate elements in our list. Uppercase
letters in math font (slightly italicized) usually denote the names of sets.

EXAMPLE 1.5.1
Lets define the set of lowercase letters in the English alphabet. We will call this set
L and define

L = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z.}

We can also define the set of uppercase letters in the English alphabet. We call this
set U and define

U = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z.}

By definition of our sets above, we see that the lowercase letter “d” is an element
of L while “d” is not an element of U . Similarly, the upper case letter “Z” in not
in L but is in U .

When we list all the elements of a set, we determine which objects are part of
the set and which objects are not. The order in which the elements are listed does
not matter, nor does repeated mention of a single element.

EXAMPLE 1.5.2
Lets define the set of lowercase vowels in the English alphabet. We will call this set
V and define

V = {a, e, i, o, u}
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This set can also be written in a di�erent order V = {u, i, o, a, e} or it can be
listed with repeated elements V = {a, a, a, e, i, i, o, o, o, o, u, u}. Each of the
representations of V above define the same set, which is the set of lower case English
vowels. From any of these descriptions of the set V , we see that the letter “e” is a
lowercase vowel while the letter “k” is not a lowercase vowel.

Often, we want to refer to individual elements of sets. To do so, we use the set
membership symbol “œ”. We write x œ A, read “x is an element of A” or “x is in
A” to indicate that the element x is contained in the set A. The expression x œ A

is a proposition, in the sense that it has a truth value. We say that x œ A is true
if and only if x is an element of A. We say x œ A is false if and only if x is not an
element of set A, written as x /œ A. The expression x /œ A is the negation of the
expression x œ A.

Sometimes we want to define sets using the element enumeration method without
having to explicitly write every element in our set. In this case, we can use the
ellipsis “...” to define our range of elements.

EXAMPLE 1.5.3
Lets define the set of the first ten positive integers. We will call this set

[10] = {1, 2, 3, ..., 10} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

The first description of this set suggests to the reader that we want to list all integers
ranging from 1 to 10 while the second description lists out each of these. The benefit
of using the ellipsis “...” is brevity and ease of reference. We can read the symbols
“...” to mean “and so on.” When defining the set [10], we can read our definition as
“[10] is the set of numbers including 1, 2, 3, and so on until 10.”

When using the ellipsis with the element enumeration method, it is important
to guard against ambiguity.

EXAMPLE 1.5.4
Lets define the set:

E = {2, 4, ..., 16}

This description is ambiguous. Perhaps we mean to define E as the even numbers
ranging from 2 to 16, given by the set E = {2, 4, 6, 8, 10, 12, 14, 16}. Or maybe we
want to list the exponent values of 2 between 2 and 16, defined by E = {2, 4, 8, 16}.
Formally speaking, our reader will not know which we intended without extra infor-
mation. Often, we can make clear our use of the ellipsis for defining sets by adding
context. We might say, let E = {2, 4, ..., 16} be the set of the first eight positive,
even integers. On the other hand, we can say let E = {2, 4, ..., 16} be the set of the
first four positive, integer powers of two. Each of these descriptions add context
and thus allow for skillful use of the ellipsis notation for simplification.

We can also list elements of infinite sets using the ellipsis. This comes in very
handy when we want to define a set with an infinite number of elements following
a special, easily discernible pattern.

EXAMPLE 1.5.5
Lets define the set of natural numbers, denoted as N, to be the set of positive
integers:

N = {1, 2, 3, 4, ...}
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We intend this description to represent the set of positive integers, starting at one,
incrementing by 1 and going on to infinity. We listed the first four elements of
the set in order to assist the reader in discovering the pattern by which we might
create future elements of this set. We see from this notation that to create the next
element of our set from the last one, we add one. We might also assist in pattern
discovery in other ways.

Any author who uses an ellipses should take responsibility to ensure that the
surpressed pattern clearly understandable.

EXAMPLE 1.5.6
Lets define the set of positive integers whose value is one less than a power of two.
We will call this set P defined as:

P = {1, 3, 7, ..., 2k ≠ 1, ...}

Because there is some ambiguity about our intended pattern, we use the expression
2k ≠ 1 to specify a generic element of our set. This helps our reader get a sense of
the desired pattern and add to the clarity of our exposition.

The second, and more e�ective, method of defining sets is known as set-builder
notation. The general structure used in this paradigm is to list the set definition
as A = {x : P (x)}, read using the following convention:

{
ø

˙ ˝¸ ˚
“The set of

x

ø
˙ ˝¸ ˚
all elements x

:
ø

˙ ˝¸ ˚
such that

P (x)}
ø

˙ ˝¸ ˚
proposition P (x) is true.”

For a given x, the statement P (x) should either be true or false. In the language of
mathematical logic, P (x) is a proposition with an associated truth value of true or
false. If the statement P (x) is true for x, then we say that x is an element of our
set. If P (x) is false for a specific x, then x is not in our set.

EXAMPLE 1.5.7
Lets define the set of positive integers between 1 and 1024. We will call this set T

defined as:

T = {x : x is an integer and 1 Æ x Æ 1024}

In this example, the proposition P (x) is the sentence “x is an integer and 1 Æ x Æ
1024.” For any x, we can easily evaluate the truth value of P (x). If x = 4, we see
P (4) is true since 4 is an integer and 1 Æ 4 Æ 1024 and therefor we know that 4 œ T .
On the other hand, for the integer x = ≠1, P (≠1) evaluates as false since ≠1 is
outside our allowable range. We conclude ≠1 /œ T . Finally, if we want to check if
the lowercase letter “b” is in T , we find the truth value of P (b). In this case P (b)
is false since the letter “b” is not an integer. We conclude that b /œ T .

There is some flexibility allowed when using set-builder notation. Some authors
like to use the vertical bar “|” instead of the colon “:” to separate variable names
from the defining proposition of the set:

{x | P (x)} = {x : P (x)}.

Both of these notations represent the same meaning. In this textbook, we will
use the colon exclusively. Another variation in set-builder notation is the variable
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name chosen to specify elements. The letter used to define the proposition P (x) is
inconsequential. We can write

{x : P (x)} = {y : P (y)} = {◊ : P (◊)}

Depending on the context, wise authors chose variable names that are suggestive
of the target application.

EXAMPLE 1.5.8
Lets define the set angles between 0 and 2fi. We will call this set:

R[0,2fi] = {◊ : ◊ is an angle, measured in radians, and 0 Æ ◊ Æ 2fi}.

Here, we choose the name of the set to be suggestive of a interval of radians and our
variable name of ◊ follows a popular convention in mathematics to use the greek
letter ◊ to name angles.

Definition 1.1: Important Number Systems

There are a number of very popular sets that we will be using in this book.
These sets show up in many fields in mathematics and have standard
names. Below we define each of these for future reference:

N = {1, 2, 3, 4, 5, ...}, the set of natural numbers or positive integers.

Z = {..., ≠3, ≠2, ≠1, 0, 1, 2, 3, ...}, the set of integers.

Q = {x : x = p/q for some p, q œ Z, q ”= 0}, the set of rational numbers.

R = {x : x is a real number }, the set of real numbers.

C = {x : x = a + bi for some a, b œ R, i =
Ô

≠1}, the set of complex numbers.

Each of the above number systems can be constructed using a finite list of ax-
ioms. Generally, these axioms can categorized into algebraic axioms or ordering
axioms. The algebraic axioms of any of the number systems above indicate impor-
tant concepts of equality. On the other hand, the order axioms give relationships
based on the order between any two elements.

It is a nontrivial mathematical problem to construct a complete mathematical
system to describe the real-number system. The study of this problem and related
issues is called Real Analysis. In this textbook, we assume familiarity with ma-
jor results in real analysis and calculus. Specifically, we assume familiarity with
both the algebraic and order axioms of the real numbers and knowledge of the exis-
tence of important results on fundamental inequalities (such as Cauchy’s inequality,
Minkowski’s inequality, and Holder’s inequality). We assume familiarity with lim-
its, derivatives, integrals and sequences and series. All of these concepts follow from
the study of the number systems listed above.
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EXAMPLE 1.5.9
Let a, b œ R with a < b. We define

(a, b) = {x œ R : a < x < b}
[a, b] = {x œ R : a Æ x Æ b}
[a, b) = {x œ R : a Æ x < b}
(a, b] = {x œ R : a < x Æ b}

(≠Œ, a) = {x œ R : x < a}
(≠Œ, a] = {x œ R : x Æ a}

(a, Œ) = {x œ R : a < x}
[a, Œ) = {x œ R : a Æ x}

(≠Œ, Œ) = R

We call any interval in the form (–, —) an open interval while we sat that intervals
in the form [–, —] are closed intervals. Intervals [–, —) and (–, —] are half-open
intervals. In this case, – and — are possibly ±Œ

Definition 1.2: Subset

Given two sets A and B, we say that A is a subset of B, written A ™ B,
if and only if every element of A is also an element of B. If there is an
element of A not contained in B, then we say A is not a subset of B and
we write A ”™ B.

EXAMPLE 1.5.10
Recall the set of lowercase vowels V from Example 1.5.1 as well as the set of lower-
case letters L and the set of uppercase letters U from Example 1.5.2. We see that
V is a subset of L, written

V ™ L.

However, since a œ V and a /œ U , V is not a subset of the set of uppercase letters
U . We write this as

V ”™ U.

EXAMPLE 1.5.11
Any interval is a subset of R. In particular, we see

(≠2, 4) ™ R.

In order to show that a set A is a subset of another set B, we need to show that
every element of A is also an element of B. A direct proof of this claim follows a
very specific format, given below.

vS20190403 19 c• Je�rey A. Anderson

DRAFT



Direct Proof of A ™ B

Proof:

Suppose x œ A.
...

Therefore, x œ B.
By definition, A ™ B.

To establish this inclusion, the properties of set A and B will often come into
play. The vertical ellipsis included in the proof structure above represent work done
by the author of a proof to establish that every element of A satisfies the conditions
for inclusion in the set B.

EXAMPLE 1.5.12
Let A = {fi/4, 9fi/4}. Let B = {◊ œ [0, 6fi] : 4 cos (◊ ≠ fi/4) ≠ 4 = 0}. We want
to show that A ™ B. In the proof below, we will establish our subset relation by
checking each element of A individually. For small sets, this option may be feasible.
Proof: Suppose that ◊ œ A. Then ◊ = fi/4 or ◊ = 9fi/4. If ◊ = fi/4, we know

4 cos (fi/4 ≠ fi/4) ≠ 4 = 4 ≠ 4 = 0.

For ◊ = 9fi/4, we see

4 cos (9fi/4 ≠ fi/4) ≠ 4 = 4 ≠ 4 = 0.

In each case, ◊ œ B. By definition, we see that A ™ B.

The set A is a proper subset of the set B if and only if A ™ B and there exists
an element x œ B such that x /œ A. Some authors write the proper subset relation
as A µ B or A ( B. In this case, we may say that A is strictly contained in B.

EXAMPLE 1.5.13
The subset relations between the most popular numbers systems are as follows

N µ Z µ Q µ R µ C.

Each of the inclusions above are strict inclusions, meaning that each subset is a
strict subset of each larger set. While all elements of N are also in Z, the reverse
relation is not true. Specifically, ≠1 œ Z and ≠1 /œ N. Similarly, we see that 1/2 œ Q
and 1/2 /œ Z. To prove that

Ô
2 œ R and

Ô
2 /œ Q is a fun mathematical exercise

assigned as a challenge problem. Finally, since
Ô

≠1 œ C while
Ô

≠1 /œ R, we see
that R is a proper subset of C.

Given sets A and B, we say these sets are equal if an only if they contain exactly
identical elements. To verify that A = B, we need to check that x œ A if and only
if x œ B. We can use subsets to establish this equivalence relation:

A = B if and only if A ™ B and B ™ A.

We can often prove that two sets are equal using a direct proof.
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Direct Proof of A = B

Proof:

i. Prove A ™ B

ii. Prove B ™ A

iii. Conclude A = B.

EXAMPLE 1.5.14

Let A =
;

x œ R : d

dx

#
x

3 ≠ 12x
$

= 0
<

and B = {≠2, 2}. Then A = B.

Proof: We want to show that A = B. We will do so by direct proof.

i. To establish that A ™ B, let x œ A. By taking the derivative of x
3 ≠ 12x and

setting it equal to zero, we know that

3x
2 ≠ 12 = 0

Factoring our derivative polynomial yields 3(x ≠ 2)(x + 2) = 0. Thus x = ≠2
or x = 2 and x œ B. Therefore A ™ B.

ii. To show B ™ A, we check each element individually. By substituting each
element of B into our equation d

dx

#
x

3 ≠ 12x
$

= 0, we see that ≠2 and 2 are
solutions to 3x

2 ≠ 12 = 0. Therefore B ™ A.

iii. By (i.) and (ii.) above, A = B.

An important special subset is known as the empty set.

Definition 1.3: Empty Set

Let ÿ = {x : x ”= x}. This set is called the empty set since it has no
elements.

We assume, via an axiom, that ÿ exists. Since there are no elements in ÿ, the
statement x œ ÿ is false for all objects x.
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Theorem 1: Classic Subset Results

Let A, B and C be any sets. Then

a. ÿ ™ A.

b. A ™ A.

c. If A ™ B and B ™ C, then A ™ C.

Proof. The proofs of these statements are good challenge problems. To begin these
proofs, look back at the method for direct proof of A ™ B. You will need to
learn about propositions and formal mathematical logic (including truth tables and
conditional statements) in order to fully understand these proofs).

Lesson 1: Suggested Problems

1. Prove that if A ™ B and B ™ C, then A ™ C.

2. Prove that X = Y where X = {x œ Z, : x
2

< 10} and Y = {0, 1, ≠1, 2, ≠2, 3, ≠3}

3. List all proper subsets of each of the following sets

a. ÿ
b. [3] = {1, 2, 3}
c. {a, b}

4. Give an example of sets A, B, C such that each of the following is true. If
no such sets exists, indicate that the relationship is not possible by writing
“impossible.”

a. A ™ B, B ”™ C and A ™ C

b. A ™ B, B ™ C and C ™ A

c. A ”™ B, B ”™ C and A ™ C

Lesson 1: Challenge Problems

1. Prove that
Ô

2 /œ Q

2. For any natural number c, define the set

cZ = {z œ Z : z = c · n for n œ Z}.

In other words, let cZ be the set of all integer multiples of c. Prove that for
any n, m œ N, n = m if and only if nZ = mZ.
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