Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1.	Т	F	There are three types of elementary row reductions we will use to solve linear systems.
2.	Т	F	Let A, \mathbf{b} be given. If $f(\mathbf{x}) = A\mathbf{x}$, then a solution to the corresponding set of linear system $A\mathbf{x} = \mathbf{b}$ exists if and only if \mathbf{b} is in the codomain of f
3.	Т	F	The homogeneous equation $A\mathbf{x} = 0$ can be inconsistent.
4.	Т	F	If $A \in \mathbb{R}^{m \times n}$ such that $A\mathbf{x} = \mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^m$, then A has m pivot columns.
5.	Т	F	If a system of linear equations has two different solutions, it must have infinitely many solutions.
6.	Т	F	Let $A \in \mathbb{R}^{m \times n}$ and suppose $\mathbf{x} \in \mathbb{R}^n$. Suppose $\mathbf{b} \in \mathbb{R}^m$ is nonzero. Suppose \mathbf{x}_1^* and \mathbf{x}_2^* are solutions to the inhomogeneous system $A\mathbf{x} = \mathbf{b}$. Then any linear combination $c_1\mathbf{x}_1^* + c_2\mathbf{x}_2^*$ is a solution to the linear system $A\mathbf{x} = \mathbf{b}$.
7.	Т	F	Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ be given. The solution set of an inhomogeneous equation $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{x} = \mathbf{x}^* + \mathbf{z}$ where \mathbf{x}^* is a particular solution to the linear system and \mathbf{z} is a solution to the homogeneous system $A\mathbf{x} = 0$.
8.	Т	F	If a system $A\mathbf{x} = \mathbf{b}$ has more than one solution, then so does the system $A\mathbf{x} = 0$.
9.	Т	F	If a system of linear equations has no free variables, then is always a unique solution.

10.	Т	F	The superposition principle for inhomogeneous systems generalizes the invertible matrix theorem by classifying completely the existence and uniqueness results for a general linear system $A\mathbf{x} = \mathbf{b}$, where $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ are given, and $\mathbf{x} \in \mathbb{R}^n$ is unknown.
11.	Т	F	The homogeneous equation $A\mathbf{x} = 0$ has nonzero solution if and only if the equivalent reduced row echelon form of the matrix equation has at least one free variable.
12.	Т	F	Given A and b of appropriate dimensions, the linear system $A\mathbf{x} = \mathbf{b}$ has a solution if and only if b can be written as a linear combination of the vectors $\{A(:,1), A(:,2),, A(:,n)\}$.
13.	Т	F	If $A \in \mathbb{R}^{m \times n}$ has <i>m</i> linearly independent rows, then the solution to $A\mathbf{x} = \mathbf{b}$ is unique for each $\mathbf{b} \in \mathbb{R}^{m}$.
14.	Т	F	Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ be given. The solution set to a linear system with an augmented matrix
			$\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$
			is identical to the solution set to the linear systems problem $A\mathbf{x} = \mathbf{b}$.
15.	Т	F	If $A \in \mathbb{R}^{n \times n}$ has n linearly independent columns, then A is row equivalent to the $n \times n$ identity matrix I_n .
16.	Т	F	If $A \in \mathbb{R}^{m \times n}$ has m linearly independent rows, then the function $f(\mathbf{x}) = A\mathbf{x}$ is a one-to-one mapping.
17.	Т	F	The general solution to a linear system problem is a description of every element of the solution set to the given linear system.

18.	Т	F	Let A, \mathbf{b} be given. If $f(\mathbf{x}) = A\mathbf{x}$, then a solution to the corresponding set of linear system $A\mathbf{x} = \mathbf{b}$ exists if and only if \mathbf{b} is in the range of f
19.	Т	F	Let A, \mathbf{x} be given. If $g(\mathbf{b}) = A^T \mathbf{b}$, then a solution to the corresponding set of linear system $A^T \mathbf{b} = \mathbf{x}$ exists if and only if \mathbf{x} is in the range of g
20.	Т	F	Suppose we have the basis $\{\mathbf{z}_1,, \mathbf{z}_d\}$ for Nul(A) with $d \leq n$. Suppose we have \mathbf{x}_1^* as a particular solution to a given inhomogeneous system $A\mathbf{x} = \mathbf{b}$. Then we can construct any solution to this system as $\mathbf{x} = \mathbf{x}_1^* + \sum_{j=1}^d c_j \mathbf{z}_j$.
21.	Т	F	Consider the linear system with m equations and n unknowns given by
			$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_2 = b_1$
			$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_2 = b_2$
			<u>:</u>
			$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_2 = b_m$
			where scalars $a_{ik}, b_i \in \mathbb{R}$ are given for all $i \in \{1, 2,, m\}$ and $k \in \{1, 2,, n\}$ and variables $x_1, x_2,, x_n$ are unknown real numbers. The solution set of this linear system is a list of n numbers $y_1, y_2,, y_n$ such that if each y_k is substituted for the corresponding x_k , then all m equations will be true.
22.	Т	F	Any two linear systems problems with the same solution set must be equivalent linear systems.
23.	Т	F	To solve a linear system, it is sufficient to find a general parametric equation that describes all elements in the solution set of this linear system.
24.	Т	F	All linear systems that have a coefficient matrix with free variables have infinitely many solutions.
25.	Т	F	Let A, \mathbf{b} be given. If $f(\mathbf{x}) = A\mathbf{x}$, then a solution to the corresponding set of linear system $A\mathbf{x} = \mathbf{b}$ exists if and only if \mathbf{b} is in the codomain of f

26.	Т	F	If $f(\mathbf{x}) = A\mathbf{x}$ and $\mathbf{b} \in \operatorname{Rng}(f)$, then b is linearly independent from the columns of A.
27.	Т	F	Let A, \mathbf{x} be given. If $g(\mathbf{b}) = A^T \mathbf{b}$, then a solution to the corresponding set of linear system $A^T \mathbf{b} = \mathbf{x}$ exists if and only if \mathbf{x} is in the range of g
28.	Т	F	If $\mathbf{b} \notin \operatorname{Col}(A)$, then we want to find a solution to $A\mathbf{x} = \mathbf{b}$ using $\operatorname{RREF}(A)$ and the superposition principle.
29.	Т	F	The superposition principle for inhomogeneous systems generalizes the invertible matrix theorem by classifying completely the existence and uniqueness results for a general linear system $A\mathbf{x} = \mathbf{b}$, where $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ are given, and $\mathbf{x} \in \mathbb{R}^n$ is unknown.
30.	Т	F	Solving linear systems using elementary row reductions is equivalent to changing a matrix equation using linear combinations on the rows of that matrix.
31.	Т	F	If $A \in \mathbb{R}^{m \times n}$ such that $A\mathbf{x} = \mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^m$, then A has m pivot columns.
32.	Т	F	Consider the linear systems problem $A {\bf x} = {\bf b}$

where matrix $A \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^m$ are given and vector $\mathbf{x} \in \mathbb{R}^n$ is unknown and desired. If this linear system is inconsistent, there may be an $\mathbf{x} \in \mathbb{R}^n$ such that

$$\|\mathbf{b} - A\mathbf{x}\|_2 = 0.$$

Multiple Choice For the problems below, circle the correct response for each question.

1. Let

$$A = \begin{bmatrix} 1 & -2 & 0 & 3 \\ 2 & -3 & -1 & -4 \\ 3 & -5 & -1 & -1 \end{bmatrix}, \qquad \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}.$$

By performing elementary row operations on this matrix we see that A is row equivalent to the matrix

$$U = \begin{bmatrix} 1 & -2 & 0 & 3 \\ 0 & 1 & -1 & -10 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Which of the following represents the solution set S of the linear system $A\mathbf{x} = \mathbf{b}$?

A.
$$S = \left\{ \mathbf{x} \in \mathbb{R}^4 : \mathbf{x} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} + c_1 \begin{bmatrix} 1\\-1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} -3\\10\\0\\1\\0 \end{bmatrix} \right\}$$

B. $S = \left\{ \mathbf{x} \in \mathbb{R}^4 : \mathbf{x} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} + c_1 \begin{bmatrix} 2\\1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} -17\\-10\\0\\1\\0 \end{bmatrix} \right\}$
C. $S = \left\{ \mathbf{x} \in \mathbb{R}^4 : \mathbf{x} = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} + c_1 \begin{bmatrix} 2\\1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 17\\10\\0\\1 \end{bmatrix} \right\}$

D. $A\mathbf{x} \neq \mathbf{b}$ for all $\mathbf{x} \in \mathbb{R}^4$.

E. None of these

2. Suppose $A \in \mathbb{R}^{m \times n}$. Given a nonzero vector $\mathbf{b} \in \mathbb{R}^m$, suppose that you know:

- I. Vectors $\mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^n$ solve the linear system problem $A\mathbf{x} = \mathbf{0}$
- II. Vectors $\mathbf{x}^*, \mathbf{y}^* \in \mathbb{R}^n$ solve the linear system problem $A\mathbf{x} = \mathbf{b}$.

Which of the following is NOT a solution for the linear system problem $A\mathbf{x} = \mathbf{b}$?

A. $\mathbf{x}^* + \mathbf{z}_1$ B. $\mathbf{y}^* + \mathbf{z}_2$ C. $\mathbf{x}^* + \mathbf{y}^*$ D. $3\mathbf{z}_1 + \mathbf{x}^* - 4\mathbf{z}_2$ E. $2\mathbf{x}^* - \mathbf{y}^*$

Free Response

1. Consider the following general linear-systems problem:

$$\underbrace{\begin{bmatrix} -2 & -1 & 6 & -5 & 0 & -3 & 4 & -17 \\ -3 & 2 & 16 & 3 & 7 & 13 & 8 & -7 \\ 1 & 0 & -4 & 1 & 0 & 2 & 2 & -2 \\ 3 & 0 & -12 & 3 & 1 & 9 & 3 & 8 \end{bmatrix}}_{A} \cdot \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} 0 \\ 16 \\ 3 \\ 7 \end{bmatrix}}_{\mathbf{b}}$$

- A. How many linearly independent solutions to $A \cdot \mathbf{x} = \mathbf{0}$ are there? Find all linearly independent solutions to this homogeneous equation $A \cdot \mathbf{x} = \mathbf{0}$?
- B. Find the solution set for this GLSP. Is the solution set to the GLSP a subspace of \mathbb{R}^{8} ? (Hint: recall the definition of a subspace of a vector space)