\qquad
\qquad

Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1. T F There are three types of elementary row reductions we will use to solve linear systems.
2. T F Let A, \mathbf{b} be given. If $f(\mathbf{x})=A \mathbf{x}$, then a solution to the corresponding set of linear system $A \mathbf{x}=\mathbf{b}$ exists if and only if \mathbf{b} is in the codomain of f
3. T F The homogeneous equation $A \mathbf{x}=\mathbf{0}$ can be inconsistent.
4. T F If $A \in \mathbb{R}^{m \times n}$ such that $A \mathbf{x}=\mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^{m}$, then A has m pivot columns.
5. T F If a system of linear equations has two different solutions, it must have infinitely many solutions.
6. T F Let $A \in \mathbb{R}^{m \times n}$ and suppose $\mathbf{x} \in \mathbb{R}^{n}$. Suppose $\mathbf{b} \in \mathbb{R}^{m}$ is nonzero. Suppose \mathbf{x}_{1}^{*} and \mathbf{x}_{2}^{*} are solutions to the inhomogeneous system $A \mathbf{x}=\mathbf{b}$. Then any linear combination $c_{1} \mathbf{x}_{1}^{*}+c_{2} \mathbf{x}_{2}^{*}$ is a solution to the linear system $A \mathbf{x}=\mathbf{b}$.
7. T Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$ be given. The solution set of an inhomogeneous equation $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{x}=\mathbf{x}^{*}+\mathbf{z}$ where \mathbf{x}^{*} is a particular solution to the linear system and \mathbf{z} is a solution to the homogeneous system $A \mathbf{x}=\mathbf{0}$.
8. T F If a system $A \mathbf{x}=\mathbf{b}$ has more than one solution, then so does the system $A \mathbf{x}=\mathbf{0}$.
9. T F If a system of linear equations has no free variables, then is always a unique solution.
10. T F The superposition principle for inhomogeneous systems generalizes the invertible matrix theorem by classifying completely the existence and uniqueness results for a general linear system $A \mathbf{x}=\mathbf{b}$, where $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$ are given, and $\mathbf{x} \in \mathbb{R}^{n}$ is unknown.
11. T The homogeneous equation $A \mathbf{x}=\mathbf{0}$ has nonzero solution if and only if the equivalent reduced row echelon form of the matrix equation has at least one free variable.
12. T F Given A and \mathbf{b} of appropriate dimensions, the linear system $A \mathbf{x}=\mathbf{b}$ has a solution if and only if \mathbf{b} can be written as a linear combination of the vectors $\{A(:, 1), A($: , 2), ..., $A(:, n)\}$.
13. $\mathrm{T} \quad \mathrm{F}$ If $A \in \mathbb{R}^{m \times n}$ has m linearly independent rows, then the solution to $A \mathbf{x}=\mathbf{b}$ is unique for each $\mathbf{b} \in \mathbb{R}^{m}$.
14. T F Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$ be given. The solution set to a linear system with an augmented matrix

$$
\left[\begin{array}{ll}
A & \mathbf{b}
\end{array}\right]
$$

is identical to the solution set to the linear systems problem $A \mathbf{x}=\mathbf{b}$.
15. T F If $A \in \mathbb{R}^{n \times n}$ has n linearly independent columns, then A is row equivalent to the $n \times n$ identity matrix I_{n}.
16. $\mathrm{T} \quad \mathrm{F}$ If $A \in \mathbb{R}^{m \times n}$ has m linearly independent rows, then the function $f(\mathbf{x})=A \mathbf{x}$ is a one-to-one mapping.
17. T F The general solution to a linear system problem is a description of every element of the solution set to the given linear system.
18. T F Let A, \mathbf{b} be given. If $f(\mathbf{x})=A \mathbf{x}$, then a solution to the corresponding set of linear system $A \mathbf{x}=\mathbf{b}$ exists if and only if \mathbf{b} is in the range of f
19. T F Let A, \mathbf{x} be given. If $g(\mathbf{b})=A^{T} \mathbf{b}$, then a solution to the corresponding set of linear system $A^{T} \mathbf{b}=\mathbf{x}$ exists if and only if \mathbf{x} is in the range of g
20. T F Suppose we have the basis $\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{d}\right\}$ for $\operatorname{Nul}(A)$ with $d \leq n$. Suppose we have \mathbf{x}_{1}^{*} as a particular solution to a given inhomogeneous system $A \mathbf{x}=\mathbf{b}$. Then we can construct any solution to this system as $\mathbf{x}=\mathbf{x}_{1}^{*}+\sum_{j=1}^{d} c_{j} \mathbf{z}_{j}$.
21. $\mathrm{T} \quad \mathrm{F}$ Consider the linear system with m equations and n unknowns given by

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{2}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{2}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{2}=b_{m}
\end{gathered}
$$

where scalars $a_{i k}, b_{i} \in \mathbb{R}$ are given for all $i \in\{1,2, \ldots, m\}$ and $k \in\{1,2, \ldots, n\}$ and variables $x_{1}, x_{2}, \ldots, x_{n}$ are unknown real numbers. The solution set of this linear system is a list of n numbers $y_{1}, y_{2}, \ldots, y_{n}$ such that if each y_{k} is substituted for the corresponding x_{k}, then all m equations will be true.
22. T F Any two linear systems problems with the same solution set must be equivalent linear systems.
23. T F To solve a linear system, it is sufficient to find a general parametric equation that describes all elements in the solution set of this linear system.
24. T F All linear systems that have a coefficient matrix with free variables have infinitely many solutions.
25. T F Let A, \mathbf{b} be given. If $f(\mathbf{x})=A \mathbf{x}$, then a solution to the corresponding set of linear system $A \mathbf{x}=\mathbf{b}$ exists if and only if \mathbf{b} is in the codomain of f
26. T F If $f(\mathbf{x})=A \mathbf{x}$ and $\mathbf{b} \in \operatorname{Rng}(f)$, then \mathbf{b} is linearly independent from the columns of A.
27. $\mathrm{T} \quad \mathrm{F}$ Let A, \mathbf{x} be given. If $g(\mathbf{b})=A^{T} \mathbf{b}$, then a solution to the corresponding set of linear system $A^{T} \mathbf{b}=\mathbf{x}$ exists if and only if \mathbf{x} is in the range of g
28. T F If $\mathbf{b} \notin \operatorname{Col}(A)$, then we want to find a solution to $A \mathbf{x}=\mathbf{b}$ using $\operatorname{RREF}(A)$ and the superposition principle.
29. T F The superposition principle for inhomogeneous systems generalizes the invertible matrix theorem by classifying completely the existence and uniqueness results for a general linear system $A \mathbf{x}=\mathbf{b}$, where $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$ are given, and $\mathbf{x} \in \mathbb{R}^{n}$ is unknown.
30. T F Solving linear systems using elementary row reductions is equivalent to changing a matrix equation using linear combinations on the rows of that matrix.
31. $\mathrm{T} \quad \mathrm{F}$ If $A \in \mathbb{R}^{m \times n}$ such that $A \mathbf{x}=\mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^{m}$, then A has m pivot columns.
32. T F Consider the linear systems problem

$$
A \mathbf{x}=\mathbf{b}
$$

where matrix $A \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^{m}$ are given and vector $\mathbf{x} \in \mathbb{R}^{n}$ is unknown and desired. If this linear system is inconsistent, there may be an $\mathbf{x} \in \mathbb{R}^{n}$ such that

$$
\|\mathbf{b}-A \mathbf{x}\|_{2}=0
$$

Multiple Choice For the problems below, circle the correct response for each question.

1. Let

$$
A=\left[\begin{array}{rrrr}
1 & -2 & 0 & 3 \\
2 & -3 & -1 & -4 \\
3 & -5 & -1 & -1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] .
$$

By performing elementary row operations on this matrix we see that A is row equivalent to the matrix

$$
U=\left[\begin{array}{rrrr}
1 & -2 & 0 & 3 \\
0 & 1 & -1 & -10 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Which of the following represents the solution set S of the linear system $A \mathbf{x}=\mathbf{b}$?
A. $S=\left\{\mathbf{x} \in \mathbb{R}^{4}: \mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]+c_{1}\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{r}-3 \\ 10 \\ 0 \\ 1\end{array}\right]\right\}$
B. $S=\left\{\mathbf{x} \in \mathbb{R}^{4}: \mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]+c_{1}\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{r}-17 \\ -10 \\ 0 \\ 1\end{array}\right]\right\}$
C. $S=\left\{\mathbf{x} \in \mathbb{R}^{4}: \mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]+c_{1}\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{c}17 \\ 10 \\ 0 \\ 1\end{array}\right]\right\}$
D. $A \mathbf{x} \neq \mathbf{b}$ for all $\mathbf{x} \in \mathbb{R}^{4}$.
E. None of these
2. Suppose $A \in \mathbb{R}^{m \times n}$. Given a nonzero vector $\mathbf{b} \in \mathbb{R}^{m}$, suppose that you know:
I. Vectors $\mathbf{z}_{1}, \mathbf{z}_{2} \in \mathbb{R}^{n}$ solve the linear system problem $A \mathbf{x}=\mathbf{0}$
II. Vectors $\mathbf{x}^{*}, \mathbf{y}^{*} \in \mathbb{R}^{n}$ solve the linear system problem $A \mathbf{x}=\mathbf{b}$.

Which of the following is NOT a solution for the linear system problem $A \mathbf{x}=\mathbf{b}$?
A. $x^{*}+z_{1}$
B. $\mathbf{y}^{*}+\mathbf{z}_{2}$
C. $\mathrm{x}^{*}+\mathrm{y}^{*}$
D. $3 \mathbf{z}_{1}+\mathbf{x}^{*}-4 \mathbf{z}_{2}$
E. $2 \mathbf{x}^{*}-\mathbf{y}^{*}$

Free Response

1. Consider the following general linear-systems problem:

A. How many linearly independent solutions to $A \cdot \mathbf{x}=\mathbf{0}$ are there? Find all linearly independent solutions to this homogeneous equation $A \cdot \mathbf{x}=\mathbf{0}$?
B. Find the solution set for this GLSP. Is the solution set to the GLSP a subspace of \mathbb{R}^{8} ? (Hint: recall the definition of a subspace of a vector space)
