
9.2 Solution Sets for General Linear Systems
We begin our discussion of solution sets by considering a toy general linear-

systems probelm
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By multiplying our entire system on the left by a sequence of elementary matrices
(or by using our calculator), we see that the equivalent system involving the RREF
of A is given by
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We can make a number of interesting observations about the matrix U . For example,
we can immediately identify the pivot columns of U to be columns 1 and 3.

U =

S

WU
1 ≠2 0 ≠1 3
0 0 1 2 ≠2
0 0 0 0 0

T

XV

Accordingly, the nonpivot columns of U are columns 2, 4 and 5. We also notice
that each of the nonpivot columns of U can be written as a linear combination of
the pivot columns. Indeed, one of the most powerful features of the RREF is our
ability to quickly ascertain the linear dependence relations between the columns of
this matrix. For example, let’s consider column 2, our first nonpivot column. We
can write:
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In other words, we can find a linear combination of columns 1 and 2 with nonzero
coe�cients that sum to zero, in the form

2 · U(:, 1) + U(:, 2) = 2 ·
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Using this equation, we can construct vector z1 œ R5 that encodes the linear de-
pendence relationships in the columns of U .
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We can move onto the next nonpivot column:

U(:, 4) =
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Again, we use vector arithmetic to set the right-hand side of this equation to zero
and create the equivalent equation

1 · U(:, 1) ≠ 2 · U(:, 3) + U(:, 4) = 1 ·
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This gives rise to a vector z2 œ R5 such that

U · z2 =
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Finally, we see that our last nonpivot column can be rewritten as

U(:, 5) =
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We set the right-hand side of this equation to zero to find
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We create vector z3 œ R5 such that
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Using this information, we immediately list three linearly independent solutions to
the linear-systems problem

U · x = 0

given by z1, z2, and z3. Moreover, we see that a particular solution for this system
of equations is given by

xú =

S

WWWWU
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The solution set the original linear system is given by

xú + c1 · z1 + c2 · z2 + c3 · z3
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Definition 9.6: Homogeneous Linear System

If A œ Rm◊n, then the corresponding homogeneous linear-systems problem
is to find all unknown vectors x œ Rn such that

A · x = 0.

The homogeneous linear-systems problem is a special case of the general linear-
systems problem where the m ◊ 1 vector b on the right-hand side is zero. It is
worth noting that homogeneous linear-systems problems always have at least one
solution. In particular, for z = 0 œ Rn we see

A · z =
#
A(:, 1) A(:, 2) · · · A(:, n)

$
·
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0 · A(:, k) = 0 œ Rm

To find any nonzero solution to a homogeneous linear systems problem, we look
for linearly dependent columns of the matrix A. Such columns are most easily
identified by transforming matrix A into RREF.

Theorem 32: Solution to A · x = 0 using RREF

Let A œ Rm◊n is a given matrix and suppose U = RREF(A). Then, for
any x œ Rn we have

A · x = 0 ≈∆ U · x = 0.

Proof. Let A œ Rm◊n. Suppose that U = RREF(A). In order to prove this bi-
conditional theorem, we need to show:

i. If A · x = 0, then U · x = 0

ii. If U · x = 0, then A · x = 0

Let’s begin by reviewing our algorithm for creating RREF(A). By construction of
U , there exists a sequence of elementary matrices E1, E2, ..., Et œ Rm◊m such that

Et · Et≠1 · · · E2 · E1 · A = U

for some t œ N. Moreover, each elementary matrix Ej can either be written as a
shear matrix, dilation matrix, or permutation matrix, for 1 Æ j Æ t. Because each
of these matrices is nonsingular, then the m ◊ m matrix

E = Et · Et≠1 · · · E2 · E1

is nonsingular. This follows from the fact that the any product of nonsingular
matrices is nonsingular.
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With this in mind, let’s start with part (i.) of this proof which is the forward
direction of our bi-conditional statement. In particular,

A · x = 0 =∆ E · A · x = E · 0

=∆ U · x = 0

The final line follows since for E · 0 = 0 for any E œ Rm◊m.
Next, let’s move to part (ii.) which is to show the reverse.

U · x = 0 =∆ (E · A) · x = E · 0

=∆ E · (A · x) = 0

=∆ A · x = 0

The final line results from the fact that if E œ Rm◊m is nonsingular, then we know
E · y = 0 if and only if y = 0. in this case, we set y = A · x. With this, we have
finish our proof since both directions of this statement hold true.

The theorem above says that if U = RREF(A), then the solution sets of A·x = 0
and U · x = 0 are identical. In other words, to solve any homogeneous linear-
systems problem, we can transform the coe�cient matrix A into RREF and solve
the equivalent system.

EXAMPLE 9.2.1
Recall general linear-systems problem from Example 9.1.2 to create a model of the
acceleration of a Tesla model S.
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In that example, we used left multiplication by elementary matrices to transform
our coe�cient matrix A into coe�cient matrix U = RREF (A) and stated the
equivalent system

5
1 0 ≠1.25
0 1 3.00

6 S
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V =
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6

Let’s use our matrix U in RREF, where

U =
5
1 0 ≠1.25
0 1 3.00

6
= RREF(A)

to find nonzero solutions to the homogeneous linear
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Theorem 33: Solution to A · x = 0

Suppose A œ Rm◊n is a given matrix. Then, the number of linearly
indepedent solutions to the homogeneous linear-systems problem

A · x = 0

is equal to the number of nonpivot columns of A.

The theorem above is very helpful from the standpoint of theory. To find the
number of nonpivot columns of A, recall that

i. p = # of pivot columns of U , where U = RREF(A) is the the reduced row
echelon of A.

ii. p is the number of linearly independent columns of A.

iii. the number of nonpivot columns of A equals d =
!
n ≠ p

"

iv. the number of nonpivot columns of A is the number of linearly dependent
columns of A

v. d is the number of linearly independent solutions to the homogeneous solution
A · x = 0

Theorem 34: Superposition of Solutions for A · x = 0

Suppose A œ Rm◊n is given. Suppose that A has a total of 0 Æ d Æ n

nonpivot columns. Let z1, z2, ..., zd be linearly independent solutions to
the homogeneous linear equation A · x = 0. In other words, suppose that

A · zi = 0

for each i œ {1, 2, ..., d}. Then, any linear combination

z = c1z1 + c2z2 + · · · + cdzd

is also a solution to the homogeneous linear-systems problem.
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Theorem 35: Superposition for Solution to A · x = b

Suppose A œ Rm◊n and b œ Rm are given, with b œ Span{A(:, k)}n

k=1.
Suppose that xú œ Rn is a particular solution to inhomogeneous linear
systems

A · x = b

Then, any solution to our linear system problem can be written as

x = xú + z

where z is any solution to the homogeneous linear system A · x = 0.

EXAMPLE 9.2.2

xú =

S

U
2.5

15.0
0.0

T

V

Further, if we want to find solutions to the homogeneous linear system Ax = 0, we
can study the related problem
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Notice that because of the special form of this matrix, we see immediately our
solution
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U
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T

V

We conclude that any solution to our original system should take the form

x = xú + c1z1 =

S
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In other words, there is no unique interpolating quadratic function.

Remark: Theorem 20 states that any linear combination of solutions to the homo-
geneous system Ax = 0 also solves this problem. Thus, if we can find a maximal set
of linearly independent vectors that solve the system Ax = 0, we can characterize
ALL solutions to the homogeneous linear system Ax = 0 as linear combination of
these vectors. This is important in light of the next two theorems.
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EXAMPLE 9.2.3
Suppose we are modeling the descent path for a Boeing 787 airplane landing in
SFO. We can visualize this modeling problem as follows:

In this case, we choose to model the descent path using a cubic polynomial

a(x) = a0 + a1x + a2x
2 + a3x

3

Here a(x) represents the altitude (in feet) of the airplane after it has travelled x

miles in the horizontal direction. To determine the unknown coe�cients, we impose
the following conditions:

Condition Verbal Description Equation
i. The landing point has an altitude of 0 a(0) = 0
ii. The tangent line to the descent path is horizontal at landing a

Õ(0) = 0.
iii. The cruising altitude is 40000 ft a(400) = 40000

In other words, x = 0 miles at the landing point. We set x = 400 miles when the
airplane begins its descent. Similarly,

We now work to create a system of 3 equations in 4 unknowns using the condi-
tions above. Using our first equation a(0) = 0, we substitute x = 0 and a(0) = 0 to
see

1 · a0 + 0 · a1 + 0 · a2 + 0 · a3 = 0

Next, let’s move onto equation (ii.), which states a
Õ(0) = 0. In this case, we have

0 · a0 + 1 · a1 + 2 · 0 · a2 + 3 · 0 · a3 = 0

Using the same reasoning, we translate condition (iii.) into the equation

1 · a0 + 400 · a1 + 4002 · a2 + 4003 · a3 = 40, 000
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We can now combine all three equations into the system

1 · a0 + 0 · a1 + 0 · a2 + 0 · a3 = 0
0 · a0 + 1 · a1 + 0 · a2 + 0 · a3 = 0
1 · a0 + 400 · a1 + 160000 · a2 + 64000000 · a3 = 40000

Using our work in part a above, we can write this polynomial interpolation
problem as follows:
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T
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A

·

S

WWU

a0
a1
a2
a3

T

XXV

¸ ˚˙ ˝
x

=

S

U
0
0

40000

T
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b

This is a general linear-systems problem A x = b with a 3 ◊ 4 coe�cient matrix A.
Just as before, our strategy to solve this problem is to transform the matrix A into
RREF form using a sequence of elementary row transformations.

Theorem 36: Existence of Solution to A · x = b

Suppose A œ Rm◊n and b œ Rm are given. Then, the linear system
A · x = b has a solution if and only if

b œ Span{A(:, k)}n

k=1.

In other words, a solution to a given linear-systems problem Ax = b if and only
if the vector b can be written as a linear combination of the columns of A.
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The best way to find general solutions to linear-systems problems is to use row
reduction into RREF and find solutions to our equivalent problem. In other words,
to find the solution set for a linear system of equations, we:

1. Begin with our original equation

A · x = b

2. Reduce the coe�cient matrix A into reduced row echelon form U = RREF(A)
by multiplying A on the left by matrix E yielding

E · A = U

where E = Et·Et≠1 · · · E2·E1 is a product of elementary matrices E1, E2, ..., Et

and each elementary matrix Ej is either a shear matrix, a transposition ma-
trix, or a dilation matrix for j = 1, 2, ..., t.

3. Simultaneously apply the same sequence of elementary matrices to the right-
hand side to produce new updated system

U · x = y

where Eb = y. As we will prove in the next section, the solution set to the
equivalent system U · x = y is identical to the solution set to the original
system A · x = b.

4. Decide if y œ Span{U(:, k)}n

k=1

• If y /œ Span{U(:, k)}n

k=1, then no exact solution exists to our original
linear-system problem A · x = b.

• If y œ Span{U(:, k)}n

k=1, then find the general structure for any solution
x in the form

x = xú + z

where xú is a particular solution to U · x = y and z is a general solution
to the homogeneous system U · x = 0
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Lesson 17: Solution sets to general linear-systems problem-

Suggested Problems

1. Consider the following general linear-systems problem:
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Find all linearly independent solutions to this homogeneous equation
A · x = 0. How many linearly independent solutions to A · x = 0
are there? How does this relate to the number of nonpivot columns of
U = RREF(A)

A.

Find a particular solution to GLSP.B.

Find the entire solution set for this GLSP.C.

2. Consider the following general linear-systems problem
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1 3 1 3 3 5
2 6 0 4 4 0
1 3 3 5 5 15
2 6 0 4 7 9
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Transform the general linear-systems problem into an equivalent system
U · x = y where U = RREF(A).

A.

What is our strategy to solve the general linear-systems problem?B.

Find the solution set for this GLSP.C.

Compare and contrast this strategy with the technique we used to solve
the nonsingular linear-systems problem. How are these technique simi-
lar? How do these algorithms di�er?

D.
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