Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1.	Т	F	The non-pivot columns of a matrix are always linearly dependent on the other columns of that matrix.
2.	Т	F	If matrices $A, B \in \mathbb{R}^{m \times n}$ are row equivalent, they have the same reduced echelon form.
3.	Т	F	By interchanging two rows of a matrix (i.e. by multiplying by transposition matrices), we can change the location of the pivot positions in the RREF form of the matrix.
4.	Т	F	The equation $A\mathbf{x} = 0$ has only the trivial solution $\mathbf{x} = 0$ if and only if there are no free variables.
5.	Т	F	An elementary matrix must be square and invertible.
6.	Т	F	The column index of the pivot columns of a matrix can be changed using row oper- ations on the matrix.
7.	Т	\mathbf{F}	Any $n \times n$ elementary matrix (dilation, shear, permutation) has at least n nonzero entries and at most $n + 1$ nonzero entries.
8.	Т	F	Sometimes the linear dependence relationships between columns of a matrix will be affected by elementary row operations on that matrix.
9.	Т	F	Every matrix is row equivalent to a unique matrix in echelon form.
10.	Т	F	Given a matrix $B \in \mathbb{R}^{m \times n}$ in echelon form, a basis for the $\operatorname{Col}(B)$ can be generated using the pivot columns of B (the columns with a single nonzero entry).
11.	Т	F	If A is a 3×3 matrix with three pivot positions, there exist elementary matrices $E_1, E_2,, E_t$ such that $E_t \cdots E_2 E_1 A = I_3$.
12.	Т	F	A free variable in a linear system corresponds to a non-pivot column in the coefficient matrix of the linear system.

13.	Т	F	The echelon form of a matrix is unique.
14.	Т	F	A basic variable in a linear system corresponds to a pivot column in the coefficient matrix of the linear system.
15.	Т	F	Solving linear systems using elementary row reductions is equivalent to changing a matrix equation using linear combinations on the rows of that matrix.
16.	Т	F	Suppose $A, B \in \mathbb{R}^{m \times n}$ for some $m, n \in \mathbb{N}$. If $A(i, :) = B(i, :)$ for some $i \in \{1, 2,, m\}$ then A must be row equivalent to B .
17.	Т	F	Performing row operations on matrix $A \in \mathbb{R}^{m \times n}$ via multiplication by a sequence of elementary matrices $E_1, E_2,, E_t \in \mathbb{R}^{m \times m}$ can change the linear dependence relationships between the columns of A .
18.	Т	F	If $A \in \mathbb{R}^{m \times n}$ is row equivalent to a matrix $U \in \mathbb{R}^{m \times n}$ in echelon form, and if the matrix U has k nonzero rows, then the dimension of the solution space for $A\mathbf{x} = 0$ is $m - k$.
19.	Т	F	If two matrices are row equivalent, then they have the same number of rows.
20.	Т	F	If the matrix equation $A\mathbf{x} = \mathbf{b}$ is transformed into matrix equation $C\mathbf{x} = \mathbf{d}$ via elementary row operations, then the solutions sets of both equations are identical.
21.	Т	F	If $A \in \mathbb{R}^{m \times n}$ is row equivalent to $B \in \mathbb{R}^{m \times n}$ and the columns of A span \mathbb{R}^m then so do the columns of B .
22.	Т	F	Every elementary row operation is reversible.
23.	Т	F	Two matrices are row equivalent if they have the same number of rows.
24.	Т	F	We only use row reduction techniques on augmented matrices associated with some linear system.

25.	Т	F	Consider the linear systems problem
			$A\mathbf{x} = \mathbf{b}$
			where matrix $A \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^m$ are given and vector $\mathbf{x} \in \mathbb{R}^n$ is unknown and desired. Suppose we apply elementary row operations on our linear system $A\mathbf{x} = \mathbf{b}$ to produce a new linear system $C\mathbf{x} = \mathbf{d}$. Then, the solution sets to these two linear systems are identical.
26.	Т	F	The row reduced echelon form of a matrix is not unique. In other words, in some cases, a matrix may be row reduced to more than one matrix in reduced row echelon form using a different sequence of row operations.
27.	Т	F	There are two steps to reducing a matrix to reduced row echelon form including: Step 1: Forward Phase- the reduction of the matrix to row echelon form Step 2: Backward Phase- the reduction of the row echelon form of the matrix into reduced row echelon form.
28.	Т	F	There are three conditions that every matrix in row echelon form must satisfy.
29.	Т	F	If B is an echelon form of A , then the pivot columns of B form a basis for the column space of A .
30.	Т	F	There are three types of elementary row reductions we will use to solve linear systems.
31.	Т	F	Every matrix is row equivalent to a unique matrix in row echelon form.
32.	Т	F	Every matrix is row equivalent to a unique matrix in reduced row-echelon form.
33.	Т	F	Suppose we are given

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}, \qquad \qquad \mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix}$$

Then, there exists an $\mathbf{x} \in \mathbb{R}^2$ such that $||A \cdot \mathbf{x} - \mathbf{b}||_2 = 0$

 $Multiple\ Choice\ \ {\rm For\ the\ problems\ below,\ circle\ the\ correct\ response\ for\ each\ question.}$

1. Let the matrix $A \in \mathbb{R}^{3 \times 5}$ be given by

$$A = \begin{bmatrix} 1 & -1 & 4 & 3 & 5 \\ 0 & 1 & -2 & -4 & 6 \\ 0 & 0 & 0 & 1 & -9 \end{bmatrix}.$$

Let $T(\mathbf{x}) = A\mathbf{x}$. Which of the following is true:

- A. The codomain of T is \mathbb{R}^5 .
- B. The range of T is the same as the codomain.
- C. T is one-to-one.
- D. T is a bijection.
- E. None of these.

For the next four problems, assume that the matrix $A \in \mathbb{R}^{4 \times 6}$ is given by

$$A = \begin{bmatrix} 1 & 2 & -5 & -2 & 6 & 14 \\ 0 & 0 & -2 & -2 & 7 & 12 \\ 2 & 4 & -5 & 1 & -5 & -1 \\ 0 & 0 & 4 & 4 & -14 & -24 \end{bmatrix}$$

2. Find $\operatorname{RREF}(A)$:

$$A. \begin{bmatrix} 1 & 2 & -5 & -2 & 6 & 14 \\ 2 & 4 & -5 & 1 & -5 & -1 \\ 0 & 0 & -2 & -2 & 7 & 12 \\ 0 & 0 & 4 & 4 & -14 & -24 \end{bmatrix} B. \begin{bmatrix} 1 & 0 & 0 & 2 & 3 & 7 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} C. \begin{bmatrix} 1 & 2 & -2.5 & 0.5 & -2.5 & -0.5 \\ 0 & 0 & 1 & 1 & -3.5 & -6 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} D. \begin{bmatrix} 1 & 2 & 0 & 3 & 0 & 7 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} E. \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

3. Which of the following vectors in NOT a solution to $A\mathbf{x} = \mathbf{0}$?

A. $\begin{bmatrix} -2\\1\\0\\0\\0\\0 \end{bmatrix}$ B. $\begin{bmatrix} 3\\0\\1\\-1\\0\\0\\0 \end{bmatrix}$	C. $\begin{bmatrix} 7\\0\\1\\0\\2\\-1 \end{bmatrix}$	D. $\begin{bmatrix} -4\\2\\0\\0\\0\\0\\0 \end{bmatrix} + \begin{bmatrix} 9\\0\\3\\-3\\0\\0\\0 \end{bmatrix}$	E. $\begin{bmatrix} 6\\0\\2\\-2\\0\\0 \end{bmatrix} + \begin{bmatrix} -7\\0\\-1\\0\\-2\\-2\\-1 \end{bmatrix}$
--	--	--	---

4. Which of the following sets of vectors are linearly dependent? Choose all that apply.

A. $\{A(:,1), A(:,3), A(:5)\}$ D. $\{A(:,1), A(:,4), A(:5)\}$ E. $\{A(:,2), A(:,3), A(:6)\}$ E. $\{A(:,2), A(:,4), A(:6)\}$

5. Find dim(Nul(A)) + dim(Nul(A^T)) : A. 1 B. 2 C. 3 D. 4 E. 5 6. Which of the following must be true? Choose all that apply. A. rank $(A^T) = 3$ B. Col $(A^T) \subseteq \mathbb{R}^6$ C. $(AA^T)^{-1}$ exists D. $(A^TA)^{-1}$ exists E. Col(A) = \mathbb{R}^3 For the next three problems, assume that the matrix $A \in \mathbb{R}^{4 \times 7}$ is given by

$$A = \begin{bmatrix} 1 & 3 & -2 & 0 & 0 & 0 & 1 \\ 2 & 6 & -5 & -2 & -1 & -2 & 1 \\ 0 & 0 & 5 & 10 & 5 & 10 & 5 \\ 2 & 6 & 0 & 8 & 4 & 12 & 8 \end{bmatrix}$$

7. Find $\operatorname{RREF}(A)$:

А.	$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}$	${3 \\ 0 \\ 0 \\ 0 \\ 0 }$	$ \begin{array}{c} -2.5 \\ 1 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} -1 \\ 2 \\ 0 \\ 0 \end{array}$	5 1 0 0	$\begin{array}{c} -1 \\ 2 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0.5 \\ 1.0 \\ 0.5 \\ 0 \end{bmatrix} B.$	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$ \begin{array}{c} 3 \\ 0 \\ 0 \\ 0 \end{array} $	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}$	4 2 0 0	$ \begin{array}{c} 2 \\ 1 \\ 0 \\ 0 \end{array} $	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}$	$ \begin{array}{c} 1.0 \\ 0.0 \\ 0.5 \\ 0.0 \end{array} $	C.	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	0 0 0 0	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}$	0 0 0 0	0 0 0 0	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
		D	$0. \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$\begin{array}{c} -3 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{ccc} 0 & 4 \\ 1 & -2 \\ 0 & 0 \\ 0 & 0 \end{array}$	2 2 1 0 0 0	$\begin{array}{ccc} 0 & -1.0 \\ 0 & 0.0 \\ 1 & 0.5 \\ 0 & 0.0 \end{array} \right]$]	E.	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}$	$\begin{array}{cccc} 3 & 4 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{c} 2\\ 1\\ 0\\ 0\end{array}$	$\begin{array}{c} 1.0 \\ 0.0 \\ 0.5 \\ 0 \end{array}$						

8. How many linearly independent solutions are there to the homogeneous linear system $A\mathbf{x} = \mathbf{0}$:

A. 1 B. 3 C. 4 D. 5 E. 7

9. Which of the following is NOT a solution for the linear-systems problem $A\mathbf{x} = \mathbf{0}$?

	[-3]	[4]	$\begin{bmatrix} -2 \end{bmatrix}$	$\begin{bmatrix} 2 \end{bmatrix}$	$\begin{bmatrix} 1.0\\ 0.0\\ 0.0 \end{bmatrix}$
	1	0	0	0	0.0
	0	2	-1	0	0.0
А.	0	B1	C. 0	D. 0	E. 0.0
	0	0	1	0	0.0
	0	0	0	1	0.5
				$\lfloor -2 \rfloor$	E. $\begin{bmatrix} 0.0\\ 0.0\\ 0.5\\ 1.0 \end{bmatrix}$

Free Response

- 1. Let $A \in \mathbb{R}^{m \times n}$. Recall the definition of the Nul(A) and Col(A).
- 2. Consider the following matrix:

$$A = \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 & -1 \\ 0 & 0 & 5 & 10 & 0 & 15 & 5 \\ 2 & 6 & 0 & 8 & 4 & 18 & 6 \end{bmatrix}$$

- A. Transform A into U = RREF(A) using elementary row operations. Show your steps.
- B. Prove that the linearly dependence relations between the columns of U are identical to the linear dependence relations on the columns of A.
- C. Using information found in U, specifically identify the linearly independent columns of A.
- D. Using information found in U, specifically identify the linearly dependent columns of A. Then, for each linearly dependent column of A, write this column as a linear combination of the previous columns.
- 3. Transform the general linear-systems problem:

$$\underbrace{\begin{bmatrix} 1 & 3 & 1 & 3 & 3 & 5\\ 2 & 6 & 0 & 4 & 4 & 0\\ 1 & 3 & 3 & 5 & 5 & 15\\ 2 & 6 & 0 & 4 & 7 & 9 \end{bmatrix}}_{A} \cdot \underbrace{\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5 \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} -3\\ -4\\ -5\\ -13 \end{bmatrix}}_{\mathbf{b}}$$

into an equivalent system $U \cdot \mathbf{x} = \mathbf{y}$ where U = RREF(A).

4. What is our strategy to solve the general linear-systems problem? Compare and contrast this strategy with the technique we used to solve the square linear-systems problem.