
Chapter 9

The General Linear Systems

9.1 Row Echelon Form
Recall the nonsingular linear-systems problem

A · x = b.

where A œ Rn◊n is a square, regular matrix and b œ Rn is known. To solve this
problem, we transformed this system into an equivalent problem

U · x = y

where U œ Rn◊n is an upper-triangular matrix with nonzero diagonal elements. To
transform our original system into our desired form, we multiply both sides of our
equation on the left by a sequence of t œ N elementary matrices

U = Et · · · E2 · E1 · A, y = Et · · · E2 · E1 · b

To find our solution, we apply Backward Substitution to solve the resulting system.
While this algorithm works well to solve square linear-systems problems with

regular coe�cient matrices, not all linear systems problems can be solve using this
technique. In this section, we generalize our strategy to develop a general Gaussian
Elimination algorithm that can be used to solve all types of linear systems problem.

Definition 9.1: The General Linear-Systems Problem

Let m, n œ N. Let A œ Rm◊n be a given rectangular matrix and b œ Rm

be a given vector. Then the general linear-systems problem is to find an
unknown vector x œ Rn such that

A · x = b.

Let’s begin our discussion by considering general linear-systems problems with
rectangular coe�cient matrices. Suppose we are given matrix A œ Rm◊n and vector
b œ Rm that define the linear-systems problem

A · x = b

The strategy we use for solving our general linear-systems problem is to replace our
original “hard” problem with an equivalent “easier” problem

U · x = y.
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We do so in such a way that our transformed system has the exact same solution
set as our original system. We create matrix U œ Rm◊n and vector y œ Rm using
a series of elementary row operations on matrix A and vector b. In particular, we
transform A and b by multiplying on the left-hand side by a series of elementary
matrices.

In our previous section, we worked to transform our regular matrix A into upper-
triangular form. In our more general situation, we will instead work to transform
A into row echelon or reduced row echelon form.

Definition 9.2: Row Echelon Form

Let U œ Rm◊n be a given matrix. We say that U is in row echelon form
if and only if U satisfies the following two conditions

i. All zeros rows are below all nonzero rows

ii. The column index of the first nonzero entry in a row is larger than
the column index of the first nonzero entry in any previous row.

iii. All entries in a column below an leading entry are zeros.

An intuitive, though imprecise, way to think about row echelon form is a matrix
U with all zero rows of U are found at the “bottom” of the matrix and the first
non-zero entry in any row is to the right of the first nonzero entries in the rows
above it. While the row echelon form of a matrix U is extremely helpful to evince
information about the solution to a given linear-systems problem Ux = y, we have
a more powerful tool in our toolset.

Definition 9.3: Reduced Row Echelon Form

Let A œ Rm◊n be a given matrix. We say that A is in reduce row echelon
form if and only if A satisfies the following three conditions

i. A is in row echelon form

ii. All leading entries of the rows of A are equal to 1

iii. For any column that includes a leading entry, all other coe�cients
in that column are zero
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EXAMPLE 9.1.1
Let’s look at some examples of matrices in row echelon form. To do so, we will
highlight the sparsity structure of these matrices, focusing on the position of zero
and nonzero entries to study the general patterns of matrices in row echelon form.
In each of the matrices below, we denote leading entries with the bullet symbol •,
representing any nonzero real number. On the other hand, the starred entries ◊
represent any real number including zero. Zero entires are marked as such. Let’s
begin with three matrix structures that satisfy the conditions of row echelon form.

ı ◊ ◊
0 ı ◊
0 0 ı

S

WWU

T

XXV

,

ı ◊ ◊ ◊ ◊ ◊ ◊
0 0 ı ◊ ◊ ◊ ◊
0 0 0 0 0 ı ◊
0 0 0 0 0 0 ı

S

WWWWU

T

XXXXV

,

0 ı ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊
0 0 ı ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊
0 0 0 0 ı ◊ ◊ ◊ ◊ ◊ ◊
0 0 0 0 0 ı ◊ ◊ ◊ ◊ ◊
0 0 0 0 0 0 0 0 ı ◊ ◊
0 0 0 0 0 0 0 0 0 0 0

S

WWWWWWWWWU

T

XXXXXXXXXV

In each of these matrices, we highlight the region in blue the entries of the
matrix that may be nonzero including all leading entries. As is evident from this
highlighting, matrices in row echelon form have a neat stair-step structure. Taking
the general row echelon structures from above, we can refine these matrices into
reduce row echelon form. In each case, we force the leading entries in each row
to be one. Further, we ensure that any column with a leading entry has one, and
only one, nonzero entry with all other coe�cients in that column being set to zero.
Below are the same matrix structures transformed into their corresponding reduced
row echelon form:

1 0 0
0 1 0
0 0 1

S

WU

T

XV

,

1 ◊ 0 ◊ ◊ 0 0
0 0 1 ◊ ◊ 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

S

WWWWU

T

XXXXV

,

0 1 0 ◊ 0 0 ◊ ◊ 0 ◊ ◊
0 0 1 ◊ 0 0 ◊ ◊ 0 ◊ ◊
0 0 0 0 1 0 ◊ ◊ 0 ◊ ◊
0 0 0 0 0 1 ◊ ◊ 0 ◊ ◊
0 0 0 0 0 0 0 0 1 ◊ ◊
0 0 0 0 0 0 0 0 0 0 0

S

WWWWWWWWWU

T

XXXXXXXXXV

We work to transform A into either row echelon form or reduced row echelon
form. As we will see, if we are lucky enough to have a square coe�cient matrix
A œ Rn◊n in our original linear system, such transformations result in an upper-
triangular matrix or diagonal matrix U . Moreover, solutions to linear-systems
problems with upper-triangular coe�cient matrices can be quickly computed us-
ing a special technique known as backward substitution. Let’s begin with a neat
example.
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EXAMPLE 9.1.2
Suppose we are hired by Road and Track Magazine to analyze the acceleration
performance of a Tesla Model S. As part of our work, we conduct an acceleration
experiment and collect two data points:

Index i Time ti in seconds (s) Velocity vi in mph

1 t1 = 0.5 v1 = 10

2 t2 = 2.5 v2 = 50

After careful analysis, we decide that for the domain 0 Æ t Æ 14, we want to fit our
two data points with a quadratic function as illustrated below:

In this case, the coe�cients a0, a1, a2 of our quadratic model our unknown an de-
sired. However, we can impose the conditions that our desired model fit the observed
behavior exactly. To this end, we set up a system of 2 equations with 3 unknowns
given by

v(t1) = v(0.5) = a0 + 0.5 a1 + 0.25 a2 = 10 = v1

v(t2) = v(2.5) = a0 + 2.5 a1 + 6.25 a2 = 40 = v2

We can write this as a general linear-systems problem A x = b in the following way

5
1 0.5 0.25
1 2.5 6.25

6 S

U
a0
a1
a2

T

V =
5
10
40

6

To solve this general system, we transform the coe�cient matrix A into matrix
U œ R2◊3 in RREF. We begin by identifying our first pivot.
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STEP 1: Identify the first pivot

Identify the entry with row index 1 and column index 1. Make sure this
entry is nonzero and refer to this nonzero entry as the first pivot of our
matrix. Refer to column 1 as the first pivot column. If the first entry
is zero, multiply this matrix on the left by a permutation matrix Pik to
swap rows and place a nonzero entry in this position.

In this case we see a11 = 1 is nonzero and we call this entry our first pivot.
5

1 0.5 0.25
1 2.5 6.25

6

Because our first pivot is in column 1, we say that A(:, 1) is the first pivot column
of our coe�cient matrix A. The next step of our elimination algorithm is to zero
out all nonpivot entries of our first pivot column.

STEP 2: Create zeros in all entries below the first pivot

Multiply the original system of equation by a sequence of shear matrices
to introduce zeros in all entries below our first pivot.

In this application, we introduce a zero value into entry a21 in the first column
5
1 0.5 0.25
1 2.5 6.25

6

We transform all entries below this pivot into zero via left multiplication by the
appropriate shear matrix. We see that the linear combination ≠1 · A(1, :) + A(2, :)
is given by:

≠1 ·
#
1 0.5 0.25

$
+

#
1 2.5 6.25

$
=

#
0 2.0 6.00

$

This yields a zero in entry (2, 1), as desired. To accomplish this transformation,
we left multiply both sides of our general linear-systems problem by shear matrix
S21(≠1) as follows

5
1 0

≠1 1

6 5
1 0.5 0.25
1 2.5 6.25

6 S

U
a0
a1
a2

T

V =
5

1 0
≠1 1

6 5
10
40

6

=∆
5
1 0.5 0.25
0 2.0 6.00

6 S

U
a0
a1
a2

T

V =
5
10
30

6
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STEP 3: Identify next pivot and introduce zeros under pivot

Move to the next row down and next column to the right. Call the first
nonzero entry in this row the second pivot. The column that this pivot is
in is called the second pivot column.

In our new, equivalent system we identify entry (2, 2) as our second pivot
C

1 0.5 0.25
0 2.0 6.00

D

We now want introduce zeros below pivot 2 in the second pivot column. Since our
original coe�cient matrix A only has two rows, we are done with this step.

In the case of a square linear-system problem, our reduction algorithm would
end here and we would solve the equivalent upper-triangular system using backward
substitution. However, for this general linear-systems problem, we see that our
equivalent system is not as easy to solve as our upper-triangular case due to the extra
column. With this in mind, we continue our elimination procedure to transform
our coe�cient matrix into RREF.

STEP 4: Turn all pivots to one

Transform each pivot to one using the appropriate dilation matrix.

Next, we will transform the second pivot in entry (2, 2) into one by multiplying the
second row by the scalar c = 0.5. In other words, we will multiply our system by
D2(0.5) resulting in the transformed system

5
1 0
0 0.5

6 5
1 0.5 0.25
0 2.0 6.00

6 S

U
a0
a1
a2

T

V =
5
1 0
0 0.5

6 5
10
30

6

=∆
5
1 0.5 0.25
0 1 3.00

6 S

U
a0
a1
a2

T

V =
5
10
15

6

This guarantees that all pivots in our system are equal to one, which is one of the
conditions for a matrix in RREF. The next condition is that each pivot column has
a unique nonzero entry.

STEP 5: Cancel out all nonpivot entries in each pivot column

Use left multiplication by shear matrices to cancel all nonpivot elements
in each pivot column.
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In this case, we see that in the second pivot column we have a single nonzero entry
above pivot 2

5
1 0.5 0.25
0 1 3.00

6

We can cancel out the entry in position (1, 2) using a shear matrix mulitplication

5
1 ≠0.5
0 1

6 5
1 0.5 0.25
0 1 3.00

6 S

U
a0
a1
a2

T

V =
5
1 ≠0.5
0 1

6 5
10
15

6

=∆
5
1 0 ≠1.25
0 1 3.00

6 S

U
a0
a1
a2

T

V =
5
2.5
15

6

Now, we have an equivalent general linear-system problem Ux = y, where the
matrix U = RREF(A). In the next section, we discuss how to create the solution
set to this system.

The algorithm above works in general. The general form of the matrix at the
end of this discussion is known as reduced row echelon form of a matrix.

Definition 9.4: Elementary Row Operations on Linear Systems

1. Replace an equation by the sum of itself and a scalar multiple times
another equation

2. Interchange two equations

3. Multiply an equation by a nonzero constant

Definition 9.5: Elementary Matrices for Row Operations

1. Shear Matrix Sik(c): Replace a row k by the sum of itself and a
scalar multiple c times row k

2. Transposition Matrix Pik: Interchange rows i and k

3. Dilation Matrix Di(c): Multiply row i by constant c

When transforming a matrix A into matrix U in either row echelon form or
reduced row echelon form, we multiply A on the left by a sequence t of elementary
matrices

Et · Et≠1 · · · E2 · E1¸ ˚˙ ˝
E

·A = U

In this case, each elementary matrix Ej is either a shear, transposition or dilation
matrix. As we will see, these elementary matrices have very beautiful properties
and ensure that our resulting linear systems problem has an identical solution set.
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Lesson 16: Row Echelon Form- Suggested Problems

1. Determine if the given matrix is in RREF, in REF or neither. For each matrix
in listed below, please

i. Write the matrix out fully (don’t be lazy)
ii. If the matrix is in RREF or REF, annotate each matrix to highlight

important properties of the definition of REF or RREF
iii. If the matrix is not in RREF nor REF, describe in detail which properties

of the definition of REF or RREF that the matrix does NOT satisfies.

Think of your solutions as a study guide for the next exam. Be sure to write
as much detail as possible. Also, make your solutions neat, organized and
easy to read.

S

WWU

1 0 3 0
0 1 ≠2 0
0 0 0 1
0 0 0 0

T

XXVA.

S

U
1 ≠4 3 9
0 2 ≠2 ≠7
0 0 2 1

T

VB.

S

WWWWU

1 0 ≠1 1 0 1
0 0 0 0 0 0
0 1 2 ≠3 0 ≠1
0 0 0 0 1 2
0 0 0 0 0 0

T

XXXXV
C.

5
1 4 0 2
0 0 1 ≠1

6
D.

S

U
3 2
0 1
0 0

T

VE.

S

U
1 1 1 0 0 0
0 0 1 1 1 0
0 0 0 0 1 1

T

VF.

2. Transform each matrix below into RREF using two di�erent methods

i. Multiply the given matrix on the left by a sequence of elementary ma-
trices E1, E2, ..., Et ( where each Ei is either a shear, dilation or trans-
position matrix). For examples on how to carry out these steps, see the
blue boxes titled “STEP 1” through “STEP 5” on p. 15 - 17 in your
textbook.

ii. Transform using a TI Calculator (see video: https://youtu.be/JKJ461c0k7c)
S

U
1 ≠3 2 ≠1
2 ≠6 4 ≠2
3 9 6 ≠4

T

VA.

S

U
0 3 ≠6 6 4 ≠5
3 ≠7 8 ≠5 8 9
3 ≠9 12 ≠9 6 15

T

VB.

3. Model for potato gun.
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