Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1. (T) F If $A, B \in \mathbb{R}^{n \times n}, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
2. T F $\operatorname{det}[(A+B)(A-B)]=\operatorname{det}\left(A^{2}-B^{2}\right)$.
3. (T) F If A is a square $n \times n$ matrix and $A^{3}=0$, then $\operatorname{det}(A)=0$.
4. T F If A is invertible, then $\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(\mathrm{A})$.
5. T F If $\operatorname{det}(A) \neq 0$, then there will always be a solution to linear system $A \mathbf{x}=\mathbf{b}$.
6. T F If $A \in \mathbb{R}^{3 \times 3}$, then $\operatorname{det}(5 A)=5 \operatorname{det}(A)$
7. T For square matrices $A, B \in \mathbb{R}^{n \times n}$, we have $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
8. T F If A is invertible, then $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$.
9. (T) F If two rows of a 3×3 matrix A are the same, then $\operatorname{det}(A)=0$.
10. T F For square $A \in \mathbb{R}^{n \times n}$, we have $\operatorname{det}\left(A^{T}\right)=-\operatorname{det}(A)$.
11. T F If $A \in \mathbb{R}^{n \times n}$ is nonsingular, then $\operatorname{det}(I)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)$.
12. T F Any matrix $A^{m \times n}$ where $m>n$ with a zero row will have a zero determinant.
13. T F If $A=L U$ is the LU-Factorization of matrix $A \in \mathbb{R}^{n \times n}$, then $\operatorname{det}(A)=\operatorname{det}(U)=$
14. T F Suppose $A, B \in \mathbb{R}^{n \times n}$. If B is produced by interchanging two rows of A, then $\operatorname{det}(B)=\operatorname{det}(A)$.
15. (T) F If A nonsingular, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}\left(A^{T}\right)}$.
16. T F $\operatorname{det}(2 A)=2 \operatorname{det}(\mathrm{~A})$.
17. T $\mathrm{F} \quad$ If $B \in \mathbb{R}^{n \times n}$ is produced by multiplying row 3 of $A \in \mathbb{R}^{n \times n}$ by 5 , then $\operatorname{det}(\mathrm{B})=5$ $\operatorname{det}(\mathrm{A})$.
18. T $\mathrm{F} \quad \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
19. T (F If $\operatorname{det}(A)=0$ for square matrix $A \in \mathbb{R}^{n \times n}$, then the corresponding system $A \mathbf{x}=\mathbf{b}$ will be inconsistent for all $\mathbf{b} \in \mathbb{R}^{n}$.
20. (T) F If A nonsingular, then $\operatorname{det}\left(A^{-T}\right)=\frac{1}{\operatorname{det}(A)}$.
21. T F If B is formed by adding to one row of A to a scalar multiple times another row of A, then $\operatorname{det}(B)=\operatorname{det}(A)$.
22. T F For square $A \in \mathbb{R}^{n \times n}$, we have $\operatorname{det}(-A)=-\operatorname{det}(A)$.
23. T F If A is an $n \times n$ matrix and $\operatorname{det}(A)=2$, then $\operatorname{det}\left(A^{3}\right)=6$.
24. T F Any square matrix with all nonzero rows will have a nonzero determinant.
25. $\quad \mathrm{T} \quad$ F Any system of n equations in n unknowns is consistent if and only if $\operatorname{det}(A) \neq 0$.
26. T F If A and B are $n \times n$ matrices with $\operatorname{det}(A)=2$ and $\operatorname{det}(B)=3$, then $\operatorname{det}(A+B)=5$.
27. (T) F For square $A \in \mathbb{R}^{n \times n}$, if $\operatorname{det}(A) \neq 0$, then A^{-1} exists.
28. T F If A is a 2×2 matrix with zero determinant, then one column of A is a scalar multiple of the other column.
29. T (F $\operatorname{det}\left(I_{n}+A\right)=1+\operatorname{det}(A)$ for any $A \in \mathbb{R}^{n \times n}$.
30. T F Let $A \in \mathbb{R}^{4 \times 3}$ and $B \in \mathbb{R}^{3 \times 4}$. Then, the determinant of product $A B$ must be zero.
31. T F For $A \in \mathbb{R}^{n \times n}$, if $\operatorname{det}(A)=0$, then two rows or two columns of A are identical.
32. T F For $A \in \mathbb{R}^{n \times n}$, if $\operatorname{det}(A)=0$, then a row or column of A is zero.
33. T F If A is a 2×2 matrix with zero determinant, then one column of A is a scalar multiple of the other column.
34. T $\mathrm{F} \quad \operatorname{det}(A B)=\operatorname{det}(B) \cdot \operatorname{det}(A)$.
35. T F If two rows of a 3×3 matrix A are the same, then $\operatorname{det}(A)=0$.
36. T F If $\operatorname{det}(A) \neq 0$, then there will always be a solution to linear system $A \mathbf{x}=\mathbf{b}$.
37. T F If $A \in \mathbb{R}^{3 \times 3}$, then $\operatorname{det}(5 A)=15 \operatorname{det}(A)$
38. T F Suppose $A, B \in \mathbb{R}^{2 \times 2}$. If $\operatorname{det}(A)=2$ and $\operatorname{det}(B)=3$, then $\operatorname{det}(A+B)=5$.

Multiple Choice For the problems below, circle the correct response for each question.

1. Let $A \in \mathbb{R}^{5 \times 5}$ with $\operatorname{det}(A)=-12$. Suppose

$$
B=S_{14}(5) \cdot P_{14} \cdot D_{3}(8) \cdot P_{23} \cdot D_{3}(1 / 4) \cdot A
$$

where we use standard notation for elementary matrices as discussed in class. Then $\operatorname{det}(B)$ is
A. 0
B. 120
C. 24
D. -24
E. -120
2. Let $A=\left[\begin{array}{rrr}2 & 3 & 2 \\ 2 & 0 & -2 \\ -3 & 1 & 0\end{array}\right]$. Then, using matrix-matrix multiplication, we see

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 / 3 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \underbrace{\left[\begin{array}{rrr}
2 & 3 & 2 \\
2 & 0 & -2 \\
-3 & 1 & 0
\end{array}\right]}_{A}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 3 & 4 \\
0 & 0 & -13 / 3
\end{array}\right]
$$

Using the information above and your knowledge of the properties of determinants, which of the following gives $\operatorname{det}(A)$:
A. $\operatorname{det}(A)=-39$
B. $\operatorname{det}(A)=-13$
C. $\operatorname{det}(A)=13$
D. $\operatorname{det}(A)=26$
E. $\operatorname{det}(A)=-26$
3. Suppose that $A \in \mathbb{R}^{n \times n}$ has nonzero determinant. Which of the following is NOT true:
A. $\operatorname{dim}(\operatorname{Nul}(A))>0$
B. $\operatorname{Nul}(A)=\operatorname{Nul}\left(A^{T}\right)$
C. $\operatorname{Col}(A)=\operatorname{Col}\left(A^{T}\right)$
D. $\operatorname{rank}(A) \leq n$
E. None of these
4. Recall that any determinant function det : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is a map from the set of $n \times n$ matrices to the real numbers such that

$$
\begin{aligned}
& \operatorname{det}(A)=0 \text { if } A \text { singular, } \\
& \operatorname{det}(A) \neq 0 \text { if } A \text { nonsingular. }
\end{aligned}
$$

Which of the following is not one of the five properties that such a determinant function must satisfy
A. $\operatorname{det}\left(I_{n}\right)=1$.
B. $\operatorname{det}(A)=0$ if $A \in \mathbb{R}^{n \times n}$ has a row of all zero entries.
C. $\operatorname{det}\left(P_{i k} \cdot A\right)=-\operatorname{det}(A)$ for any transposition matrix $P_{i k} \in \mathbb{R}^{n \times n}$.
D. $\operatorname{det}\left(S_{i k}(c) \cdot A\right)=c \cdot \operatorname{det}(A)$ for all $1 \leq i \leq n, 1 \leq k \leq n, i \neq k$ and $c \in \mathbb{R}$.
E. $\operatorname{det}\left(D_{j}(c) \cdot A\right)=c \cdot \operatorname{det}(A)$ for each $1 \leq j \leq n$ and all $c \in \mathbb{R}$.
5. Let $A=\left[\begin{array}{rrr}2 & 1 & 1 \\ 4 & 5 & 2 \\ 2 & -2 & 0\end{array}\right]$. Then, which of the following gives $\operatorname{det}(A)$:
A. 0
B. 10
C. 6
D. -6
E. None of these.
6. Suppose that $B \in \mathbb{R}^{3 \times 3}$ with the property that $\operatorname{det}\left(B^{2}\right)=\operatorname{det}(B)$. Which of the following statements about B must be true:
A. B is invertible
B. $\operatorname{det}(B)=0$
C. $B=B^{2}$
D. $\operatorname{det}\left(B^{5}\right)=\operatorname{det}\left(B^{3}\right)$
E. None of these
7. Suppose that $U \in \mathbb{R}^{3 \times 3}$ is the upper triangular matrix from the LU factorization of matrix

$$
A=\left[\begin{array}{rrr}
2 & 1 & 1 \\
4 & 5 & -2 \\
2 & -2 & 0
\end{array}\right]
$$

in problem 6 above. What do you know about the product of the diagonal elements of U given by $u_{11} u_{22} u_{33}$?
A. $\operatorname{det}(A)=a_{11} a_{22} a_{33}$
B. $u_{11} u_{22} u_{33}=0$
C. $u_{11} u_{22} u_{33}=1$
D. $u_{11} u_{22} u_{33}=-30$
E. $u_{11} u_{22} u_{33}=30$
8. Let $A \in \mathbb{R}^{5 \times 5}$ with $\operatorname{det}(A)=-4$. Suppose

$$
S_{14}(4) \cdot P_{14} \cdot D_{3}(1 / 8) \cdot P_{23} \cdot D_{3}(4) \cdot P_{12} \cdot B=A
$$

where we use standard notation for elementary matrices as discussed in class. Then $\operatorname{det}(B)$ is
A. 0
B. 2
C. -2
D. 8
E. -8
9. Suppose that $A \in \mathbb{R}^{3 \times 3}$ with inverse given by $A^{-1}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1\end{array}\right] \cdot\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{rrr}0.5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ Then, find $\operatorname{det}(A)$:
A. $\frac{1}{6}$
B. $-\frac{1}{6}$
C. -6
D. 6
E. $\frac{2}{3}$

Free Response

1. For what values of a, b, c is the matrix $\left[\begin{array}{rrr}0 & a & -b \\ -a & 0 & c \\ b & -c & 0\end{array}\right]$ invertible?
2. Use the formula for the determinant of an 3×3 to prove that the determinant of a lower triangular matrix is the product of the diagonal elements.
3. Prove the 2×2 determinant function that satisfies the five properties we discussed in class must be unique?
A. $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
B. If $i \neq k$, then $\operatorname{det}\left(P_{i k} \cdot A\right)=-\operatorname{det}(A)$
C. If $i \neq k$, then $\operatorname{det}\left(S_{i k}(c) \cdot A\right)=\operatorname{det}(A)$
D. For $1 \leq i \leq n, \operatorname{det}\left(D_{i}(c) \cdot A\right)=c \cdot \operatorname{det}(A)$
E. . $\operatorname{det}(A \cdot B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$
4. Prove the 3×3 determinant function that satisfies the five properties we discussed in class must be unique?
A. $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
B. If $i \neq k$, then $\operatorname{det}\left(P_{i k} \cdot A\right)=-\operatorname{det}(A)$
C. If $i \neq k$, then $\operatorname{det}\left(S_{i k}(c) \cdot A\right)=\operatorname{det}(A)$
D. For $1 \leq i \leq n, \operatorname{det}\left(D_{i}(c) \cdot A\right)=c \cdot \operatorname{det}(A)$
5. Use the general formula for determinants to prove $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$
6. Recall that for $A \in \mathbb{R}^{3 \times 3}$, the determinant of A was given by

$$
\operatorname{det}(A)=\sum_{\pi \in S_{3}} \operatorname{sgn}(\pi) a_{\pi(1), 1} a_{\pi(2), 2} a_{\pi(3), 3}
$$

(a) List all permutations $\pi \in S_{3}$. In other words, list all maps $\pi:\{1,2,3\} \rightarrow\{1,2,3\}$ that are one-to-one and onto.

Solution: Consider S_{3}, the permutation group on a set with three elements. We know that for each $i \in\{1,2, \ldots, 6\}$, we have permutations

$$
\pi_{i}:\{1,2,3\} \longrightarrow\{1,2,3\}
$$

that are both one-to-one and onto. From our theorem above, we know that S_{3} contains exactly $3!=6$ different permutations. We will label these permutations here. Consider:

$$
\begin{array}{lll}
\pi_{1}:=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 2
\end{array}\right), & \pi_{2}:=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), & \pi_{3}:=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \\
\pi_{4}:=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), & \pi_{5}:=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), & \pi_{6}:=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
\end{array}
$$

To investigate inversions with respect to each π_{i}, we need to consider three different pairs:

$$
\begin{equation*}
(1,2) \quad(1,3) \tag{2,3}
\end{equation*}
$$

We see that $\operatorname{Inv}\left(\pi_{i}\right)=\{(1,3),(2,3)\}$ are given by

$$
\begin{array}{lll}
\operatorname{Inv}\left(\pi_{1}\right)=\emptyset & \Longrightarrow & n\left(\pi_{1}\right)=0 \\
\operatorname{Inv}\left(\pi_{2}\right)=\{(1,3),(2,3)\} & \Longrightarrow & n\left(\pi_{2}\right)=2 \\
\operatorname{Inv}\left(\pi_{3}\right)=\{(1,2),(1,3)\} & \Longrightarrow & n\left(\pi_{3}\right)=2 \\
\operatorname{Inv}\left(\pi_{4}\right)=\{(1,2),(1,3),(2,3)\} & \Longrightarrow & n\left(\pi_{4}\right)=3 \\
\operatorname{Inv}\left(\pi_{5}\right)=\{(2,3)\} & \Longrightarrow & n\left(\pi_{5}\right)=1 \\
\operatorname{Inv}\left(\pi_{6}\right)=\{(1,2)\} & \Longrightarrow & n\left(\pi_{6}\right)=1
\end{array}
$$

We can use this data to confirm that

$$
\begin{aligned}
& \operatorname{sgn}\left(\pi_{1}\right)=(-1)^{n\left(\pi_{1}\right)}=(-1)^{0}=+1 \\
& \operatorname{sgn}\left(\pi_{2}\right)=(-1)^{n\left(\pi_{2}\right)}=(-1)^{2}=+1 \\
& \operatorname{sgn}\left(\pi_{3}\right)=(-1)^{n\left(\pi_{3}\right)}=(-1)^{2}=+1 \\
& \operatorname{sgn}\left(\pi_{4}\right)=(-1)^{n\left(\pi_{4}\right)}=(-1)^{3}=-1 \\
& \operatorname{sgn}\left(\pi_{5}\right)=(-1)^{n\left(\pi_{5}\right)}=(-1)^{1}=-1 \\
& \operatorname{sgn}\left(\pi_{6}\right)=(-1)^{n\left(\pi_{6}\right)}=(-1)^{1}=-1
\end{aligned}
$$

With this, we are ready to build the determinant function for 3×3 matrices.
(b) Use your work in part (a) and the determinant formula given above to prove that that the determinant of an upper triangular matrix $U \in \mathbb{R}^{3 \times 3}$ is the product of the main diagonal elements.

Solution: Using the information above, for matrix $A \in \mathbb{R}^{3 \times 3}$ we have

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) \cdot a_{1 \pi(1)} \cdot a_{2 \pi(2)} \cdot a_{3 \pi(3)} \\
& =\sum_{i=1}^{6} \operatorname{sgn}\left(\pi_{i}\right) \cdot a_{1 \pi_{i}(1)} \cdot a_{2 \pi_{i}(2)} \cdot a_{3 \pi(3)} \\
& =a_{11} \cdot a_{22} \cdot a_{33}+a_{12} \cdot a_{23} \cdot a_{31}+a_{13} \cdot a_{21} \cdot a_{32} \\
& -a_{13} \cdot a_{22} \cdot a_{31}-a_{11} \cdot a_{23} \cdot a_{32}-a_{12} \cdot a_{21} \cdot a_{33}
\end{aligned}
$$

If we assume that A is upper-triangular, we know

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right] \quad a_{i k} \begin{cases}\in \mathbb{R} & \text { if } i \leq k \\
=0 & \text { if } i>k\end{cases}
$$

Thus, since all permutations $\pi_{2}, \pi_{3}, \ldots, \pi_{6}$ contain at least one inversion, we see that the determinant function greatly simplifies to

$$
\operatorname{det}(A)=a_{11} \cdot a_{22} \cdot a_{33}
$$

which is just the product of the diagonal elements. This is exactly what we wanted to show.

