Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1.	Т	\mathbf{F}	If $A, B \in \mathbb{R}^{n \times n}$, $\det(AB) = \det(A)\det(B)$.
2.	Т	F	$\det [(A+B)(A-B)] = \det(A^2 - B^2).$
3.	Т	F	If A is a square $n \times n$ matrix and $A^3 = 0$, then $det(A) = 0$.
4.	Т	F	If A is invertible, then det $(A^{-1}) = \det(A)$.
5.	Т	F	If $det(A) \neq 0$, then there will always be a solution to linear system $A\mathbf{x} = \mathbf{b}$.
6.	Т	F	If $A \in \mathbb{R}^{3 \times 3}$, then $det(5A) = 5 det(A)$
7.	Т	F	For square matrices $A, B \in \mathbb{R}^{n \times n}$, we have $\det(A + B) = \det(A) + \det(B)$.
8.	Т	F	If A is invertible, then $det(A)det(A^{-1}) = 1$.
9.	Т	F	If two rows of a 3×3 matrix A are the same, then $det(A) = 0$.
10.	Т	F	For square $A \in \mathbb{R}^{n \times n}$, we have $det(A^T) = -det(A)$.
11.	Т	F	If $A \in \mathbb{R}^{n \times n}$ is nonsingular, then $\det(I) = \det(A)\det(A^{-1})$.
12.	Т	F	Any matrix $A^{m \times n}$ where $m > n$ with a zero row will have a zero determinant.
13.	Т	F	If $A = LU$ is the LU-Factorization of matrix $A \in \mathbb{R}^{n \times n}$, then $det(A) = det(U) = u_{11}u_{22}\cdots u_{nn}$.

14.	Т	F	Suppose $A, B \in \mathbb{R}^{n \times n}$. If B is produced by interchanging two rows of A, then $det(B) = det(A)$.
15.	Т	F	If A nonsingular, then $det(A^{-1}) = \frac{1}{det(A^T)}$.
16.	Т	F	$\det(2A) = 2 \det(A).$
17.	Т	F	If $B \in \mathbb{R}^{n \times n}$ is produced by multiplying row 3 of $A \in \mathbb{R}^{n \times n}$ by 5, then det(B) = 5 det(A).
18.	Т	F	$\det(A) = \det(A^T)$
19.	Т	F	If $det(A) = 0$ for square matrix $A \in \mathbb{R}^{n \times n}$, then the corresponding system $A\mathbf{x} = \mathbf{b}$ will be inconsistent for all $\mathbf{b} \in \mathbb{R}^{n}$.
20.	Т	F	If A nonsingular, then $det(A^{-T}) = \frac{1}{det(A)}$.
21.	Т	F	If B is formed by adding to one row of A to a scalar multiple times another row of A, then $det(B) = det(A)$.
22.	Т	F	For square $A \in \mathbb{R}^{n \times n}$, we have $det(-A) = -det(A)$.
23.	Т	F	If A is an $n \times n$ matrix and det $(A) = 2$, then det $(A^3) = 6$.
24.	Т	F	Any square matrix with all nonzero rows will have a nonzero determinant.
25.	Т	F	Any system of n equations in n unknowns is consistent if and only if $det(A) \neq 0$.
26.	Т	F	If A and B are $n \times n$ matrices with $det(A) = 2$ and $det(B) = 3$, then $det(A + B) = 5$.

27.	Т	F	For square $A \in \mathbb{R}^{n \times n}$, if $det(A) \neq 0$, then A^{-1} exists.
28.	Т	F	If A is a 2×2 matrix with zero determinant, then one column of A is a scalar multiple of the other column.
29.	Т	F	$\det(I_n + A) = 1 + \det(A)$ for any $A \in \mathbb{R}^{n \times n}$.
30.	Т	F	Let $A \in \mathbb{R}^{4 \times 3}$ and $B \in \mathbb{R}^{3 \times 4}$. Then, the determinant of product AB must be zero.
31.	Т	F	For $A \in \mathbb{R}^{n \times n}$, if det $(A) = 0$, then two rows or two columns of A are identical.
32.	Т	F	For $A \in \mathbb{R}^{n \times n}$, if det $(A) = 0$, then a row or column of A is zero.
33.	Т	F	If A is a 2×2 matrix with zero determinant, then one column of A is a scalar multiple of the other column.
34.	Т	F	$\det(AB) = \det(B) \cdot \det(A).$
35.	Т	F	If two rows of a 3×3 matrix A are the same, then $det(A) = 0$.
36.	Т	F	If $det(A) \neq 0$, then there will always be a solution to linear system $A\mathbf{x} = \mathbf{b}$.
37.	Т	F	If $A \in \mathbb{R}^{3 \times 3}$, then $\det(5A) = 15 \det(A)$
38.	Т	F	Suppose $A, B \in \mathbb{R}^{2 \times 2}$. If det $(A) = 2$ and det $(B) = 3$, then det $(A + B) = 5$.

Multiple Choice For the problems below, circle the correct response for each question.

1. Let $A \in \mathbb{R}^{5 \times 5}$ with det(A) = -12. Suppose

 $B = S_{14}(5) \cdot P_{14} \cdot D_3(8) \cdot P_{23} \cdot D_3(1/4) \cdot A$

where we use standard notation for elementary matrices as discussed in class. Then det(B) is

A. 0	B. 120	C. 24	D24	E120
------	--------	-------	-----	------

2. Let $A =$	$\begin{bmatrix} 2\\ 2\\ -3 \end{bmatrix}$	$ \begin{array}{c} 3 \\ 0 \\ 1 \end{array} $	$\begin{bmatrix} 2\\ -2\\ 0 \end{bmatrix}$. The	en, ۱	using m	atri	x-ma	atrix	: mult	iplica	tion,	we	see				
	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$0 \\ 1 \\ -1/3$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	$\begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \begin{bmatrix} 0\\1\\0 \end{bmatrix}$	$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$\begin{array}{c} 0\\ 1/2\\ 0\end{array}$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	$\begin{bmatrix} 2\\ 2\\ -3 \end{bmatrix}$	$3 \\ 0 \\ 1 \\ 4$	$\begin{bmatrix} 2\\ -2\\ 0 \end{bmatrix} =$	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$egin{array}{c} 0 \ 3 \ 0 \end{array}$	$\begin{bmatrix} -1\\4\\-13/3 \end{bmatrix}$	

Using the information above and your knowledge of the properties of determinants, which of the following gives det(A):

A. det(A) = -39B. det(A) = -13C. det(A) = 13D. det(A) = 26E. det(A) = -26

3. Suppose that $A \in \mathbb{R}^{n \times n}$ has nonzero determinant. Which of the following is NOT true:

- A. dim(Nul(A)) > 0B. Nul $(A) = Nul(A^T)$ C. Col $(A) = Col(A^T)$ D. rank $(A) \le n$ E. None of these
- 4. Recall that any determinant function det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ is a map from the set of $n \times n$ matrices to the real numbers such that

$$det(A) = 0 \text{ if } A \text{ singular},$$
$$det(A) \neq 0 \text{ if } A \text{ nonsingular}$$

Which of the following is not one of the five properties that such a determinant function must satisfy

A. $\det(I_n) = 1$.

- B. det(A) = 0 if $A \in \mathbb{R}^{n \times n}$ has a row of all zero entries.
- C. $\det(P_{ik} \cdot A) = -\det(A)$ for any transposition matrix $P_{ik} \in \mathbb{R}^{n \times n}$.
- D. $\det(S_{ik}(c) \cdot A) = c \cdot \det(A)$ for all $1 \le i \le n, 1 \le k \le n, i \ne k$ and $c \in \mathbb{R}$.
- E. $\det(D_j(c) \cdot A) = c \cdot \det(A)$ for each $1 \le j \le n$ and all $c \in \mathbb{R}$.

5. Let $A =$	$\begin{bmatrix} 2 & 1 \\ 4 & 5 \\ 2 & -2 \end{bmatrix}$	$\begin{bmatrix} 1\\2\\0 \end{bmatrix}$. Then, wh	nich of the following gi	ves $\det(A)$:	
A. 0		B. 10	C. 6	D6	E. None of these.

6. Suppose that $B \in \mathbb{R}^{3 \times 3}$ with the property that $\det(B^2) = \det(B)$. Which of the following statements about B must be true:

A. B is invertible B. det(B) = 0 C. $B = B^2$ D. det $(B^5) = det (B^3)$ E. None of these

7. Suppose that $U \in \mathbb{R}^{3 \times 3}$ is the upper triangular matrix from the LU factorization of matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 5 & -2 \\ 2 & -2 & 0 \end{bmatrix}$$

in problem 6 above. What do you know about the product of the diagonal elements of U given by $u_{11}u_{22}u_{33}$?

A. $det(A) = a_{11}a_{22}a_{33}$ D. $u_{11}u_{22}u_{33} = -30$ E. $u_{11}u_{22}u_{33} = 30$

8. Let $A \in \mathbb{R}^{5 \times 5}$ with det(A) = -4. Suppose

 $S_{14}(4) \cdot P_{14} \cdot D_3(1/8) \cdot P_{23} \cdot D_3(4) \cdot P_{12} \cdot B = A$

where we use standard notation for elementary matrices as discussed in class. Then det(B) is

	A. 0	B. 2	C2	D. 8	E8
9.	Suppose that $A \in \mathbb{R}^{3 \times 3}$	³ with inverse given by			
	$A^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$ \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} $	$\cdot \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1/3 \\ 0 & 0 \end{bmatrix}$	$ \begin{bmatrix} 0 & 0 \\ 3 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} . $	$\begin{bmatrix} 0.5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Then, find
$$det(A)$$
:

A.
$$\frac{1}{6}$$
 B. $-\frac{1}{6}$ C. -6 D. 6 E. $\frac{2}{3}$

Free Response

	0	a	-b	
1. For what values of a, b, c is the matrix	-a	0	c	invertible?
	b	-c	0	

- 2. Use the formula for the determinant of an 3×3 to prove that the determinant of a lower triangular matrix is the product of the diagonal elements.
- 3. Prove the 2×2 determinant function that satisfies the five properties we discussed in class must be unique?
 - A. $\det(A) = \det(A^T)$ B. If $i \neq k$, then $\det(P_{ik} \cdot A) = -\det(A)$ C. If $i \neq k$, then $\det(S_{ik}(c) \cdot A) = \det(A)$ D. For $1 \leq i \leq n$, $\det(D_i(c) \cdot A) = c \cdot \det(A)$ E. . $\det(A \cdot B) = \det(A) \cdot \det(B)$
- 4. Prove the 3×3 determinant function that satisfies the five properties we discussed in class must be unique?
 - A. $det(A) = det(A^T)$
 - B. If $i \neq k$, then $\det(P_{ik} \cdot A) = -\det(A)$
 - C. If $i \neq k$, then $\det(S_{ik}(c) \cdot A) = \det(A)$
 - D. For $1 \le i \le n$, $\det(D_i(c) \cdot A) = c \cdot \det(A)$
- 5. Use the general formula for determinants to prove $det(A) = det(A^T)$
- 6. Recall that for $A \in \mathbb{R}^{3 \times 3}$, the determinant of A was given by

$$\det(A) = \sum_{\pi \in S_3} \operatorname{sgn}(\pi) a_{\pi(1),1} a_{\pi(2),2} a_{\pi(3),3}$$

- (a) List all permutations $\pi \in S_3$. In other words, list all maps $\pi : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ that are one-to-one and onto.
- (b) Use your work in part (a) and the determinant formula given above to prove that that the determinant of an upper triangular matrix $U \in \mathbb{R}^{3 \times 3}$ is the product of the main diagonal elements.