
1.7 Permutations

Definition 1.16: Permutation of a Set A

Let A be a nonempty set. A permutation of A is a bijective function
from A to itself. In other words, a permutation is a map

fi : A ≠æ A

such that

i. fi is one-to-one: if fi(a) = fi(b), then a = b

ii. fi is onto: Codomain(fi) = Rng(fi)

Permutations are the mathematical technology used to discuss rearrangements
of the ordering of a specific set.

EXAMPLE 1.7.1
Imagine we want to rotate tires on a 2006 Honda Civic during a routine tire change
at America’s tires. At the beginning of our job, each of the four tires is already on
the car in one of the four positions. We define the set A = {1, 2, 3, 4} used to label
each tire location and assign each tire in that location a number in A. We do this
by sitting in the drivers seat, and labeling the front left tire number one, the front
right number 2, the back left tire number three and the back right tire number four.

To rearrange the tires, we want to place each tire in one of the four positions on
the car and no two tires can be place in the same location. One possible rearrange-
ment is to define permutation f : A æ A on the set A = {1, 2, 3, 4.} We can use a
mathematic description net of A under our map f :

f(1) = 4, f(2) = 3, f(3) = 2, f(4) = 1.

Here, we’ve assigned switched the tires in front left and back right positions and
we’ve switched the tires in the front right and back right.

Our mapping f is injective since each i œ A has a unique image under f . We
see that f is surjective since Rng(f) = A.
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Definition 1.17: The set of all permutations of n elements (Sn)

Let [n] = {j œ N : 1 Æ j Æ n}. The permutation group on [n], denoted
as Sn, is the set of all permutations of the set [n] = {1, 2, ..., n}. These
are exactly the set of one-to-one maps from the set of the first n integers
to itself. For any element fi œ Sn, fi maps {1, 2, ..., n} onto itself.

Cauchy’s two-line notation for a permutation of the integers

fi : {1, 2, ..., n} ≠æ {1, 2, ..., n}

is given as:
3

1 2 3 · · · n
fi(1) fi(2) fi(3) · · · fi(n)

4
.

In this notation, we can easily see that the image of i is fi(i) under the map fi.

EXAMPLE 1.7.2
Suppose you own a limousine company in San Francisco. You have six employees
that work the night shift from 4pm - 2am. You also have six di�erent limousines,
each with a di�erent make and model. Because your employees tend to bicker about
driving assignments, you decide to randomize the picking process using permuta-
tions. You give each of your employees a number from in the set {1, 2, 3, 4, 5, 6}
and you do the same for your fleet of cars. Each afternoon before work, you assign
each driver to a car by determining a map between the driver number and the car
number. For example, you determine the following map:

fi(1) = 5, fi(2) = 2, fi(3) = 1, f(4) = 3. fi(5) = 6, f(6) = 4.

While the function notation provides a clear mapping, it is much more e�cient to
track the entire mapping all at once. We can do this via a two row, six column
array:

3
1 2 3 4 5 6
5 2 1 3 6 4

4
.

The first row of our array above indicates the driver number and the second row
assigns each driver to the car they will drive that night.

Under this permutation, we see that driver 2 is assigned car number 2 while
driver 6 is assigned car 4. You post the day’s permutation on the board before
work so that all employees can quickly and easily determine which car they are
assigned.
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Theorem 6: The Number of Elements of Sn

Let [n] = {1, 2, ..., n}. If Sn is the set of all bijections from [n] to [n], then
there are a total of n! = n · (n ≠ 1) · · · 2 · 1 elements of Sn.

Proof. Let fi : [n] æ [n] be a permutation.

EXAMPLE 1.7.3
Let’s list all the permutations of S2, the permutation group on a set with two
elements. By our definition of S2, we want to find all bijective maps

fi : {1, 2} ≠æ {1, 2}

We know by our theorem above that there are precisely 2! = 2 such permutations.
Let’s list these:

fi1 :=
3

1 2
1 2

4
, fi2 :=

3
1 2
2 1

4
.

EXAMPLE 1.7.4
Consider S3, the permutation group on a set with three elements. From our theorem
above, we know that S3 contains exactly 3! = 6 di�erent permutations. We will
label these permutations here. Consider:

fi1 :=
3

1 2 3
1 2 2

4
, fi2 :=

3
1 2 3
2 3 1

4
, fi3 :=

3
1 2 3
3 1 2

4
,

fi4 :=
3

1 2 3
3 2 1

4
, fi5 :=

3
1 2 3
1 3 2

4
, fi6 :=

3
1 2 3
2 1 3

4

We will come back to this permutation often in our discussion of the signs of any
permutation as well in our development of the determinant in Chapter 7.
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Definition 1.18: Inversion of a pair (i, j) with respect to fi

Let fi œ Sn. Suppose that i, j œ [n] are chosen such that

1 Æ i < j Æ n.

We call the pair (i, j) an inversion with respect to fi if and only if

fi(i) > fi(j).

In other words, we call the pair (i, j) and inversion with respect to a given permu-
tation fi if the images fi(i) and fi(j) are in have opposite orders from the pre-images
i and j. One quick way to checki if (i, j) is an inversion with respect to fi is to
calculate the ratio

fi(i) ≠ fi(j)
i ≠ j

If this ratio is less than 0, it means that (i, j) is an inversion with respect to fi. On
the other hand, if this ratio is greater than 0, then the pair (i, j) is not an inversion
with respect to fi.

EXAMPLE 1.7.5
Consider S2 = {fi1, fi2}. In this case, because fii : {1, 2} ≠æ {1, 2}, we only have to
check the pair (1, 2). We begin with fi1. Consider

fi1(1) ≠ fi1(2)
1 ≠ 2 = 1 ≠ 2

1 ≠ 2 = ≠1
≠1 = 1 > 0

Since this ratio is positive, we know (1, 2) is NOT an inversion with respect to fi1.
On the other hand, let’s consider the pair (1, 2) with respect to the permutation
fi2. We notice that

fi2(1) ≠ fi2(2)
1 ≠ 2 = 2 ≠ 1

1 ≠ 2 = 1
≠1 = ≠1 < 0

Since this ratio is negative, we know that (1, 2) is an inversion with respect to fi2.

Definition 1.19: Set of all inversions for a given fi œ Sn

Let fi œ Sn be given. Then we define the set of all inversions with respect
to fi as

Inv(fi) = {(i, j) : i, j œ [n], i < j, and fi(i) > fi(j)}
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EXAMPLE 1.7.6
Let’s consider the set S3, which has a total of 3! = 6 permutations. We know that
for each i œ {1, 2, ..., 6}, we have

fii : {1, 2, 3} ≠æ {1, 2, 3}

Thus, if we are going to investigate inversions with respect to each fii, we need to
consider three di�erent pairs:

(1, 2) (1, 3) (2, 3)

For each of these permutations, we can find Inv (fii). We begin with the identity
permutation fi1, and we note that Inv (fi1) = ÿ since

fi1(1) ≠ fi1(2)
1 ≠ 2 = 1 ≠ 2

1 ≠ 2 > 0

fi1(1) ≠ fi1(3)
1 ≠ 3 = 1 ≠ 3

1 ≠ 2 > 0

fi1(2) ≠ fi1(3)
2 ≠ 3 = 2 ≠ 3

1 ≠ 2 > 0.

Because there are no inversions with respect to fi1, we confirm that Inv (fii) = ÿ.
Next, let’s move onto fi(2). We can analyze each pair (i, j) with respect to fi2 to
find:

fi2(1) ≠ fi2(2)
1 ≠ 2 = 2 ≠ 3

1 ≠ 2 > 0

fi2(1) ≠ fi2(3)
1 ≠ 3 = 2 ≠ 1

1 ≠ 2 < 0

fi2(2) ≠ fi2(3)
2 ≠ 3 = 3 ≠ 1

1 ≠ 2 < 0.

Thus, we see that Inv(fi2) = {(1, 3), (2, 3)} has two elements. We can continue in
this manner to confirm

Inv (fi1) = ÿ
Inv (fi2) = {(1, 3), (2, 3)}
Inv (fi3) = {(1, 2), (1, 3)}
Inv (fi4) = {(1, 2), (1, 3), (2, 3)}
Inv (fi5) = {(2, 3)}
Inv (fi6) = {(1, 2)}
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Definition 1.20: Sign of a Permutation

Using this definition, we can create a function n : Sn æ [n] such that
n(fi) gives the number of distinct inversions with respect to fi. Using
this output, we can define the sign of a permutation fi to be sgn(fi) =
(≠1)n(fi). We can write this another way:

sgn(fi) =
;

+1 if there are an even number of inversions with respect to fi,
≠1 if there are an odd number of inversions with respect to fi.

EXAMPLE 1.7.7
Let’s find the sign of each permutation in S3. We do so by recalling that

Inv (fi1) = ÿ =∆ n(fi1) = 0
Inv (fi2) = {(1, 3), (2, 3)} =∆ n(fi2) = 2
Inv (fi3) = {(1, 2), (1, 3)} =∆ n(fi3) = 2
Inv (fi4) = {(1, 2), (1, 3), (2, 3)} =∆ n(fi4) = 3
Inv (fi5) = {(2, 3)} =∆ n(fi5) = 1
Inv (fi6) = {(1, 2)} =∆ n(fi6) = 1

We can use this data to confirm that

sgn(fi1) = (≠1)n(fi1) = (≠1)0 = +1
sgn(fi2) = (≠1)n(fi2) = (≠1)2 = +1
sgn(fi3) = (≠1)n(fi3) = (≠1)2 = +1
sgn(fi4) = (≠1)n(fi4) = (≠1)3 = ≠1
sgn(fi5) = (≠1)n(fi5) = (≠1)1 = ≠1
sgn(fi6) = (≠1)n(fi6) = (≠1)1 = ≠1

This will come in very helpful in our development of the determinant function in
Chapter 7.
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Definition 1.21: Cycles

Let x1, x2, ..., xk œ [n] such that xi ”= xj for i, j œ [k] with k Æ n and
i ”= j. A k≠cycle is a permutation f of the form

fi(x1) = x2, fi(x2) = x3, ..., fi(xk≠1) = xk, fi(xk) = x1,

where fi(i) = i for any i œ Sn ≠ {x1, x2, ..., xk}.

One of the really easy ways to represent cycles is via permutation diagram that
illustrates the relationships between permutation elements using vertices and nodes.

EXAMPLE 1.7.8
Lets consider the permutation fi œ S8 defined as follows:

fi :=
3

1 2 3 4 5 6 7 8
5 2 8 1 3 6 7 4

4
.

This permutation is a 5 cycle as we see here ( 1 5 3 8 4 ). We can also visualize the
permutation using a permutation diagram.

‡i :=

1 2 3 4 5 6 7 8r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

1 2 3 4 5 6 7 8
This diagram will come in very useful if we’d like to learn more about the

composition of two permutations ‡, fi œ Sn.

EXAMPLE 1.7.9
The set of permutations of A = {1, 2, 3} can be written out in a multitude of ways
including an explicit description of the individual function values, the matrix form
or the cycle decomposition form.

‡i :=

1 2 3r
r
r

r
r

r
1 2 3

This diagram will come in very useful if we’d like to learn more about the
composition of two permutations ‡, fi œ Sn.
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Theorem 7: Existence of a Cycle Decomposition of Permuta-
tions

Let fi : [n] æ [n] be a permutation. Then, fi can be written using a unique
cycle decomposition.

Theorem 8: Transpositions Generate All Permutations

Every element of Sn may be written as a composition of transpositions.

Proof. Use logic set up in Dummit and Foote.

‡i :=

1 2 3 4 5 6r
r

r
r

r
r

r
r

r
r

r
r
1 2 3 4 5 6
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