Name : \qquad

Permutation Definition of Determinant

Studying permutation group S_{2}

Let's list all the permutations of S_{2}, the permutation group on a set with two elements. By our definition of S_{2}, we want to find all bijective maps

$$
\pi:\{1,2\} \longrightarrow\{1,2\}
$$

We know by our theorem, there are precisely $2!=2$ such permutations. Let's list these:

$$
\pi_{1}:=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right), \quad \pi_{2}:=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
$$

Finding inversion pairs for S_{2}
Let's now look at the only pair of two elements $(1,2)$ and study the inversions of this pair with respect to each π_{i}. To this end, consider:

$$
\frac{\pi_{1}(1)-\pi_{1}(2)}{1-2}=
$$

$$
\frac{\pi_{2}(1)-\pi_{2}(2)}{1-2}=
$$

We can continue in this manner to confirm

$$
\begin{aligned}
& \operatorname{Inv}\left(\pi_{1}\right)= \\
& \operatorname{Inv}\left(\pi_{2}\right)=
\end{aligned}
$$

Studying permutation group S_{3}

Consider S_{3}, the permutation group on a set with three elements. From our theorem, we know S_{3} contains exactly $3!=6$ different permutations. We will label these permutations below:

$$
\begin{array}{lll}
\pi_{1}:=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 2
\end{array}\right), & \pi_{2}:=\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), & \pi_{3}:=\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \\
\pi_{4}:=\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), & \pi_{5}:=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), & \pi_{6}:=\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)
\end{array}
$$

Finding inversion pairs for S_{3}

If we are going to investigate inversions with respect to each π_{i}, we need to consider three different pairs:
$(1,3)$

For each of these permutations, we can find $\operatorname{Inv}\left(\pi_{i}\right)$.

We begin with the identity permutation π_{1} and analyze each pair (i, j) with respect to π_{1} :

$$
\begin{aligned}
& \frac{\pi_{1}(1)-\pi_{1}(2)}{1-2}= \\
& \frac{\pi_{1}(1)-\pi_{1}(3)}{1-3}= \\
& \frac{\pi_{1}(2)-\pi_{1}(3)}{2-3}=
\end{aligned}
$$

We can analyze each pair (i, j) with respect to π_{2} to find:

$$
\begin{aligned}
& \frac{\pi_{2}(1)-\pi_{2}(2)}{1-2}= \\
& \frac{\pi_{2}(1)-\pi_{2}(3)}{1-3}= \\
& \frac{\pi_{2}(2)-\pi_{2}(3)}{2-3}=
\end{aligned}
$$

Let's analyze each pair (i, j) with respect to π_{3} :

$$
\begin{aligned}
& \frac{\pi_{3}(1)-\pi_{3}(2)}{1-2}= \\
& \frac{\pi_{3}(1)-\pi_{3}(3)}{1-3}= \\
& \frac{\pi_{3}(2)-\pi_{3}(3)}{2-3}=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi_{4}(1)-\pi_{4}(2)}{1-2}= \\
& \frac{\pi_{4}(1)-\pi_{4}(3)}{1-3}= \\
& \frac{\pi_{4}(2)-\pi_{4}(3)}{2-3}=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi_{5}(1)-\pi_{5}(2)}{1-2}= \\
& \frac{\pi_{5}(1)-\pi_{5}(3)}{1-3}= \\
& \frac{\pi_{5}(2)-\pi_{5}(3)}{2-3}=
\end{aligned}
$$

$$
\frac{\pi_{6}(1)-\pi_{6}(2)}{1-2}=
$$

$$
\frac{\pi_{6}(1)-\pi_{6}(3)}{1-3}=
$$

$$
\frac{\pi_{6}(2)-\pi_{6}(3)}{2-3}=
$$

Thus, let's find the set of inversion pairs and the number of inversions with respect to each permutation and write these below:

$\operatorname{Inv}\left(\pi_{1}\right)=$	\Rightarrow	$n\left(\pi_{1}\right)=$
$\operatorname{Inv}\left(\pi_{2}\right)=$	\Rightarrow	$n\left(\pi_{2}\right)=$
$\operatorname{Inv}\left(\pi_{3}\right)=$	\Rightarrow	$n\left(\pi_{3}\right)=$
$\operatorname{Inv}\left(\pi_{4}\right)=$	\Rightarrow	$n\left(\pi_{4}\right)=$
$\operatorname{Inv}\left(\pi_{5}\right)=$	\Rightarrow	$n\left(\pi_{5}\right)=$
$\operatorname{Inv}\left(\pi_{6}\right)=$	\Rightarrow	$n\left(\pi_{6}\right)=$

Finally, we can use our work above to find the sign of each permutation in S_{3} :
$\operatorname{Sgn}\left(\pi_{1}\right)=$
$\operatorname{Sgn}\left(\pi_{2}\right)=$
$\operatorname{Sgn}\left(\pi_{3}\right)=$
$\operatorname{Sgn}\left(\pi_{4}\right)=$
$\operatorname{Sgn}\left(\pi_{5}\right)=$
$\operatorname{Sgn}\left(\pi_{6}\right)=$

