\qquad
\qquad

Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1. T F Backward substitution is used to solve lower-triangular, linear systems.
2. T F The diagonal elements of upper triangular U from the LU factorization of A are unique.
3. T F Let $A=\left[\begin{array}{ccc}2 & 2 & 2 \\ 4 & 7 & 7 \\ 6 & 18 & 22\end{array}\right]$. Notice that

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 4 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 2 & 2 \\
0 & 3 & 3 \\
0 & 0 & 4
\end{array}\right]
$$

Let $\mathbf{x} \in \mathbb{R}^{3}$ be the vector such that $A \mathbf{x}=\left[\begin{array}{c}6 \\ 24 \\ 70\end{array}\right]$. Then $x_{1}+x_{2}+x_{3}=3$.

Multiple Choice For the problems below, circle the correct response for each question.

1. Suppose we are given a matrix $A=\left[\begin{array}{rrr}2 & 1 & 1 \\ 4 & 5 & -2 \\ 2 & -2 & 0\end{array}\right]$.

Find the matrix $L \in \mathbb{R}^{3 \times 3}$ from the LU factorization of A.
A. $\left[\begin{array}{rrr}1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -1 & 1\end{array}\right]$
B. $\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 1 & 1\end{array}\right]$
C. $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$
D. $\left[\begin{array}{rrr}1 & 0 & 0 \\ 4 & 1 & 0 \\ 2 & -2 & 1\end{array}\right]$
E. $\left[\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & -1 & 1\end{array}\right]$
2. The LU Factorization of a given 3×3 matrix is $A=\left[\begin{array}{lll}2 & 6 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 4\end{array}\right]=\underbrace{\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0.5 & -1 & 1\end{array}\right]}_{L} \underbrace{\left[\begin{array}{lll}2 & 6 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4.5\end{array}\right]}_{U}$.

Use the LU factorization of A combined with forward and backward substitution to find the solution to the linear systems problem

$$
\left[\begin{array}{lll}
2 & 6 & 1 \\
0 & 2 & 1 \\
1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
0 \\
0 \\
-9
\end{array}\right]
$$

Which of the following gives $-x_{1}+x_{2}+x_{3}$?
A. -2
B. -1
C. 0
D. 1
E. 2
3. Below we are given the LU Factorization of the matrix A and vector \mathbf{b} :

$$
A=\left[\begin{array}{rrr}
2 & -1 & 1 \\
6 & -4 & 2 \\
4 & 2 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
2 & -4 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & -1 & 1 \\
0 & -1 & -1 \\
0 & 0 & -5
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
6 \\
0
\end{array}\right]
$$

Use this LU Factorization to solve the linear system $A \mathbf{x}=\mathbf{b}$ by solving the two linear systems

$$
L \mathbf{y}=\mathbf{b} \quad \text { and } \quad U \mathbf{x}=\mathbf{y}
$$

Then find $\mathbf{y}^{T} \mathbf{x}$:
A. -22
B. 22
C. -16
D. -18
E. 18
4. Consider the following matrix equation

$$
\underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -5 & 1
\end{array}\right]}_{L_{3}} \cdot \underbrace{\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -3 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right]}_{L_{2}} \cdot \underbrace{\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]}_{L_{1}} \cdot \underbrace{\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 1 & 3 & 1 \\
3 & 0 & 2 & 2 \\
1 & 4 & 0 & 1
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{rrrr}
1 & 1 & 2 & 2 \\
0 & -1 & -1 & -3 \\
0 & 0 & -1 & 5 \\
0 & 0 & 0 & -35
\end{array}\right]}_{U}
$$

Find the lower-triangular matrix $L \in \mathbb{R}^{4 \times 4}$ from the $L U$ factorization of the matrix A :
A. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 3 & 1 & 0 \\ 1 & -3 & 5 & 1\end{array}\right]$
B. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -3 & -3 & 1 & 0 \\ -1 & 3 & -5 & 1\end{array}\right]$
C. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & -3 & 1 & 0 \\ -22 & 18 & -5 & 1\end{array}\right]$
D. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 9 & 3 & 1 & 0 \\ 40 & 12 & 5 & 1\end{array}\right]$
E. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 2 & -1 & -1 & 0 \\ 2 & -3 & 5 & -35\end{array}\right]$
5. Consider the 3×3 matrices given by

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
4 & 2 & 1 \\
9 & 3 & 1
\end{array}\right] \quad U=\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & -2 & -3 \\
0 & 0 & 1
\end{array}\right]
$$

As discussed in class, we can multiply the matrix A by a sequence of three elementary matrices E_{1}, E_{2}, E_{3} to produce the upper-triangular matrix $U \in \mathbb{R}^{3 \times 3}$ with

$$
E_{3} \cdot E_{2} \cdot E_{1} \cdot A=U
$$

Which of the following matrices is NOT one of the elementary matrices E_{i} we used to accomplish this transformation?
A. $\left[\begin{array}{rrr}1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
B. $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -9 & 0 & 1\end{array}\right]$
C. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1.5 & 1\end{array}\right]$
D. $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1\end{array}\right]$

Free Response

For problems 1-2 below, consider the following mass-spring chain:

1. Recall from our previous discussion, this system results in a linear systems problem

$$
\underbrace{\left[\begin{array}{rrr}
60 & -40 & 0 \\
-40 & 80 & -40 \\
0 & -40 & 60
\end{array}\right]}_{K} \cdot \underbrace{\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]}_{\mathbf{u}}=9.8 \underbrace{\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]}_{\mathbf{m}}
$$

Find the LU Factorization of matrix K by multiplying K on the left by a sequence of elementary matrices.
2. Use the LU factorization method we have discussed in class to find the displacement vector $\mathbf{u} \in \mathbb{R}^{3}$ measured in meters at $t=T$ when the system is at equilibrium under the force of gravity on earth in each of the following cases:
A. $\left[\begin{array}{l}m_{1} \\ m_{2} \\ m_{3}\end{array}\right]=\left[\begin{array}{l}0.200 \\ 0.400 \\ 0.200\end{array}\right]$
B. $\left[\begin{array}{l}m_{1} \\ m_{2} \\ m_{3}\end{array}\right]=\left[\begin{array}{l}0.5 \\ 1.0 \\ 0.5\end{array}\right]$

For problems 3-4, consider the nonsingular linear-systems problem

$$
\underbrace{\left[\begin{array}{lll}
0 & 2 & 1 \\
2 & 6 & 1 \\
1 & 1 & 4
\end{array}\right]}_{A} \cdot \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}_{\mathbf{x}}=\underbrace{\left[\begin{array}{r}
0 \\
-2 \\
8
\end{array}\right]}_{\mathbf{b}}
$$

3. Calculate the LU factorization of A from problem 1 above.
4. Solve the original linear-systems problem above using the LU Factorization you found in problem 3.
