Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1.	Т	F	Backward substitution is used to solve lower-triangular, linear systems.
2.	Т	F	The diagonal elements of upper triangular U from the LU factorization of A are unique.
3.	Т	F	Let $A = \begin{bmatrix} 2 & 2 & 2 \\ 4 & 7 & 7 \\ 6 & 18 & 22 \end{bmatrix}$. Notice that
			$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 2 \\ 0 & 3 & 3 \\ 0 & 0 & 4 \end{bmatrix}.$
			Let $\mathbf{x} \in \mathbb{R}^3$ be the vector such that $A\mathbf{x} = \begin{bmatrix} 6\\ 24\\ 70 \end{bmatrix}$. Then $x_1 + x_2 + x_3 = 3$.

Multiple Choice For the problems below, circle the correct response for each question.

1. Suppose we are given a matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 5 & -2 \\ 2 & -2 & 0 \end{bmatrix}$.

Find the matrix $L \in \mathbb{R}^{3 \times 3}$ from the LU factorization of A.

A.
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$
 B. $\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$
 C. $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$
 D. $\begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix}$
 E. $\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$

2. The LU Factorization of a given 3×3 matrix is $A = \begin{bmatrix} 2 & 6 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 4 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0.5 & -1 & 1 \end{bmatrix}}_{L} \underbrace{\begin{bmatrix} 2 & 6 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4.5 \end{bmatrix}}_{U}.$

Use the LU factorization of A combined with forward and backward substitution to find the solution to the linear systems problem

$$\begin{bmatrix} 2 & 6 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -9 \end{bmatrix}$$

Which of the following gives $-x_1 + x_2 + x_3$?

3. Below we are given the LU Factorization of the matrix A and vector **b**:

$$A = \begin{bmatrix} 2 & -1 & 1 \\ 6 & -4 & 2 \\ 4 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & -4 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & -5 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$$

Use this LU Factorization to solve the linear system $A\mathbf{x} = \mathbf{b}$ by solving the two linear systems

$$L\mathbf{y} = \mathbf{b}$$
 and $U\mathbf{x} = \mathbf{y}$

Then find $\mathbf{y}^T \mathbf{x}$:

A22	B. 22	C16	D18	E. 18

4. Consider the following matrix equation

$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	0	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	0	0		$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	0	0	0		$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	1	2	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$		$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	2	$\begin{bmatrix} 2\\ 2 \end{bmatrix}$
$\begin{bmatrix} 0\\0 \end{bmatrix}$	$1 \\ 0$	0 1	0	$\begin{vmatrix} 0\\0 \end{vmatrix}$	1 -3	$\frac{1}{1}$	$\begin{bmatrix} 0\\0 \end{bmatrix}$	•	$\begin{vmatrix} -2 \\ -3 \end{vmatrix}$	$1 \\ 0$	$\frac{1}{1}$	$\begin{bmatrix} 0\\0 \end{bmatrix}$	•	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	$1 \\ 0$	$\frac{3}{2}$	$\begin{bmatrix} 1\\2 \end{bmatrix}$	=	0	$^{-1}_{0}$	-1 -1	$\begin{bmatrix} -3 \\ 5 \end{bmatrix}$
0	0	-5	1	0	3	0	1		$\lfloor -1 \rfloor$	0	0	1		1	4	0	1		0	0	0	-35
<u> </u>		L_3			L_2			· · ·		L_1				-		4					Ũ	

Find the lower-triangular matrix $L \in \mathbb{R}^{4 \times 4}$ from the LU factorization of the matrix A:

A.	B. $\begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -3 & -3 & 1 & 0 \\ -1 & 3 & -5 & 1 \end{bmatrix}$	С.	$ \begin{array}{c} 1 \\ -2 \\ 3 \\ -22 \end{array} $	$\begin{array}{c} 0 \\ 1 \\ -3 \\ 18 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ -5 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$
----	--	----	--	---	--	--

D.	$\begin{bmatrix} 1\\ 2\\ 9\\ 40 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 3 \\ 12 \end{array}$	${0 \\ 0 \\ 1 \\ 5 }$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	E.	$\begin{bmatrix} 1\\1\\2\\2 \end{bmatrix}$	$0 \\ -1 \\ -1 \\ -3$	$\begin{array}{c} 0 \\ 0 \\ -1 \\ 5 \end{array}$	$\begin{bmatrix} 0\\0\\-35\end{bmatrix}$
----	--	--	-----------------------	--	----	--	-----------------------	--	--

5. Consider the 3×3 matrices given by

	[1	1	1		[1	1	1]
A =	4	2	1	U =	0	-2	-3
	9	3	1		0	0	1

As discussed in class, we can multiply the matrix A by a sequence of three elementary matrices E_1, E_2, E_3 to produce the upper-triangular matrix $U \in \mathbb{R}^{3 \times 3}$ with

 $E_3 \cdot E_2 \cdot E_1 \cdot A = U.$

Which of the following matrices is <u>NOT</u> one of the elementary matrices E_i we used to accomplish this transformation?

A.
$$\begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
B. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -9 & 0 & 1 \end{bmatrix}$ C. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1.5 & 1 \end{bmatrix}$ D. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}$

Free Response

For problems 1 - 2 below, consider the following mass-spring chain:

1. Recall from our previous discussion, this system results in a linear systems problem

60	-40	0	u_1		$[m_1]$	
-40	80	-40	$\cdot u_2$	= 9.8	m_2	
	-40	60	u_3		m_3	
	<u> </u>		\sim			
	K		u		\mathbf{m}	

Find the LU Factorization of matrix K by multiplying K on the left by a sequence of elementary matrices.

2. Use the LU factorization method we have discussed in class to find the displacement vector $\mathbf{u} \in \mathbb{R}^3$ measured in meters at t = T when the system is at equilibrium under the force of gravity on earth in each of the following cases:

A.
$$\begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} 0.200 \\ 0.400 \\ 0.200 \end{bmatrix}$$
 B. $\begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 1.0 \\ 0.5 \end{bmatrix}$

For problems 3 - 4, consider the nonsingular linear-systems problem

$$\underbrace{\begin{bmatrix} 0 & 2 & 1 \\ 2 & 6 & 1 \\ 1 & 1 & 4 \end{bmatrix}}_{A} \cdot \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} 0 \\ -2 \\ 8 \end{bmatrix}}_{\mathbf{b}}$$

- 3. Calculate the LU factorization of A from problem 1 above.
- 4. Solve the original linear-systems problem above using the LU Factorization you found in problem 3.