
6.1 The LU Factorization without Pivoting
Given a matrix A œ Rm◊n, a matrix factorization is an equation that expresses

A as a product of two or more matrices. Here are some very powerful factorizations

A = LU LU Factorization for Square Matrix A œ Rn◊n

A = LL
T Cholesky Factorization for Square, Symmetric Matrix A = A

T œ Rn◊n

A = QR QR Factorization for Rectangular Matrix A œ Rm◊n

A = U�V
T Singular Value Decomposition (SVD) for Rectangular Matrix A œ Rm◊n

As we will see, matrix factorizations are used to simplify the solutions to each
of the following problems

ii. Nonsingular linear-systems problems:

Given a nonsingular matrix A œ Rn◊n and b œ Rn
, find x œ Rn

such that
Ax = b

iii. Least-squares problems:

Given A œ Rm◊n and b œ Rm
, find

min
xœRn

ÎAx ≠ bÎ2

iv. Eigenvalue problems:

Given A œ Rn◊n, find scalar ⁄ and n ◊ 1 vector x such that

Ax = ⁄x

Notice that in each of these three problem types, we are given a matrix A and
asked to find a vector x with some special properties. The main idea behind matrix
factorization is to spend some time and energy pre-processing the “given” matrix
A into very special parts.

These parts (known as factors) can then be used to more easily compute solutions
to our main problem types. Also, if done correctly, the factorizations lead to more
accurate approximate solutions when we use computers to solve these problems. In
this sense, you can think of matrix factorizations as an analysis problem, rather
than a synthesis problem. Let’s look at an analogy.
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Suppose you are given two scalars 11 and 70 and you are asked to find the
product 11 · 70. We might call this a synthesis problem, also known as a forward
problem, since we are asked to synthesize new information from given information.
In order to solve this problem, we don’t necessarily have to pre-process either of our
two given inputs. Instead we can use brute force to find 11 · 70 = 770. Similarly,
we can think of the matrix-matrix multiplication problem as a synthesis problem:

Given two pieces of data (a matrix matrices A œ Rn◊n and vector
x œ Rn), combine this data together to create new data (the product)

b = A · x

where b œ Rn is given by the matrix-vector product

b =
nÿ

k=1
xkA(:, k)

Because of our definition, we do not need to process the two input matrices A or
x to calculate the product. Instead, we can use brute force and find the product
using vector operations.

Now, let’s consider an analysis problem, also known as an inverse problem.
Suppose we want to know the number x such that 22x = 770. In this case, we are
given only one input, the operation that e�ects this input and the corresponding
output. Using this information, we want to find our other input x. Of course, we
could say that

x = 770
22

and use our brute force division algorithm to find our answer. However, this is both
frustrating and time consuming. The algorithm requires guess-and-check machinery
and requires many arithmetic sub-steps. This leaves us yearning for a better way
to do this. This is where factorizations come in.

If we spend a few minutes pre-processing the input 22 = 2 · 11 into unique
factors, then we can simplify our problem. In particular, we see

x = 770
2 · 11 = 10

2 · 77
11 = 5 · 7 = 35

We designed our factorization to give us much better insight and a quicker way to
find the solution to our inverse problem.

This is how we will think about all of our matrix factorizations. For the case of
the LU Factorization, we will be solving the linear systems problem.

Given a matrix matrices A œ Rm◊n and output vector b œ Rm), find
the input vector(s) x œ Rn such that

b = A · x

In general, it is not very easy to see which scalar weights on the columns of A

create a linear combinations the results in b. This is partially due to the fact that
A is not written in a form that makes these calculations easy. In particular, to
get such a solution as is, we need to do a ton of work and arithmetic sub-steps to
transform into RREF form. We are left craving a better way. This is where the LU
Factorization comes in.
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Definition 6.1: LU Factorization without Pivoting

Let A œ Rn◊n be a given, square, invertible matrix with non-zeros on the
main diagonal elements. An LU factorization of A is given by

A = LU

where U œ Rn◊n is upper-triangular with nonzero diagonal elements.
Also, L is unit lower-triangular with all of its diagonal entries equal to 1.

Suppose we have the LU Factorization A = LU of our given matrix. Then, we
can transform the linear-systems problem Ax = b into to related problems

Ax = b

≈∆ (LU)x = b

≈∆ L(Ux) = b

≈∆ Ly = b and Ux = y

We can solve the linear systems problem Ly = b using forward substitution and
Ux = y using backward substitution.

EXAMPLE 6.1.1
Let’s look back at Example 5.1.4. In this problem, we worked to create a quadratic
function model for the motion of a falling object using the linear-systems problem

S

U
1 3.0 9.00
1 3.3 10.89
1 3.6 12.96

T

V

S

U
x1
x2
x3

T

V =

S

U
3.000
2.559
1.236

T

V

We used elementary matrices to transform A into upper triangular form, as follows
S

U
1 0 0
0 1 0
0 ≠2 1

T

V

¸ ˚˙ ˝
L2

·

S

U
1 0 0

≠1 1 0
≠1 0 1

T

V

¸ ˚˙ ˝
L1

·

S

U
1 3.0 9.00
1 3.3 10.89
1 3.6 12.96

T

V

¸ ˚˙ ˝
A

=

S

U
1 3.0 9.00
0 0.3 1.89
0 0 0.18

T

V

¸ ˚˙ ˝
U

We can write this transformation symbolically as

L2 · L1 · A = U

where Li is a unit lower-triangular matrix and thus is invertible. Moreover, from
our discussion of inverses, we see that

L
≠1
2 =

S

U
1 0 0
0 1 0
0 2 1

T

V L
≠1
1 =

S

U
1 0 0
1 1 0
1 0 1

T

V
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With this, we multiply both sides of our transformed equation of L2 · L1 · A = U

by (L2 · L1)≠1 to find
S

U
1 3.0 9.00
1 3.3 10.89
1 3.6 12.96

T

V

¸ ˚˙ ˝
A

=

S

U
1 0 0
1 1 0
1 0 1

T

V

¸ ˚˙ ˝
L

≠1
1

S

U
1 0 0
0 1 0
0 2 1

T

V

¸ ˚˙ ˝
L

≠1
2

S

U
1 3.0 9.00
0 0.3 1.89
0 0 0.18

T

V

¸ ˚˙ ˝
U

Setting L = L
≠1
1 · L

≠1
2 , we have A = LU is the LU Factorization of A with

L =

S

U
1 0 0
1 1 0
1 2 1

T

V

We can use this LU Factorization to solve our linear systems problem by solving
two equivalent problems

S

U
1 0 0
1 1 0
1 2 1

T

V

S

U
y1
y2
y3

T

V =

S

U
3.000
2.559
1.236

T

V ,

S

U
1 3.0 9.00
0 0.3 1.89
0 0 0.18

T

V

S

U
x1
x2
x3

T

V =

S

U
y1
y2
y3

T

V

Using forward substitution, we see that
S

U
y1
y2
y3

T

V =

S

U
3.000

≠0.441
≠0.882

T

V

We can substitute this vector into our matrix equation Ux = y to find our desired
x using backward substituion

S

U
x1
x2
x3

T

V =

S

U
≠41.1
29.4
≠4.9

T

V

This is the same solution we found in Example 5.1.4.
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In our example above, we transformed the original matrix A into upper-triangular
form by introducing zero entries into the strictly lower triangular portions of A. This
algorithm will work in general to produce the LU Factorization of a given matrix
A. Starting with column 1, then column 2 and continued through column (n ≠ 1),
introduce zeros below the main diagonal elements by multiplying A on the left by
a sequence of unit lower-triangular matrices in the form

Ln≠1 · Ln≠2 · · · L2 · L1 · A = U

The resulting upper-triangular matrix U œ Rn◊n is right factor from the LU fac-
torization. Further, the unit lower-triangular matrix Lk œ Rn◊n introduces zeros
in the kth column for k = 1, 2, ..., (n ≠ 1). As we will see, we can produce the left
factor L using the formula

L = L
≠1
1 · L

≠1
2 · · · L

≠1
n≠2 · L

≠1
n≠1

Because of the structure of each matrix Lk, we can construct the inverse L
≠1
k

very
quickly. In this manner we produce the LU factorization of matrix A = LU .

EXAMPLE 6.1.2
Show example here. Ideal example comes from applications.
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For k = 1, 2, ..., (n ≠ 1), let’s consider at the beginning of the kth step of our
reduction algorithm. We begin with the matrix A. We then apply a series of lower
triangular matrices to produce an updated matrix

Lk≠1 · · · L1 · A =

S

WWWWWWWWWWWWU

u11 u12 · · · u1,k≠1 u1k u1,k+1 · · · u1n

0 u22 · · · u2,k≠1 u2k u2,k+1 · · · u2n

...
. . . . . .

...
...

...
. . .

...
0 · · · 0 uk≠1,k≠1 uk≠1,k uk≠1,k+1 · · · uk≠1,n

0 · · · 0 0 uk,k uk,k+1 · · · xk,n

0 · · · 0 0 xk+1,k xk+1,k+1 · · · xk+1,n

...
. . .

...
...

...
...

. . .
...

0 · · · 0 0 xnk xn,k+1 · · · xnn

T

XXXXXXXXXXXXV

Let’s focus on introducing zeros in the kth column of this matrix. In particular, at
the beginning of the kth step let’s introduce call the kth column xk. We want to
choose matrix Lk such that

Lkxk =

S

WWWWWWWWU

u1k

...
ukk

0
...
0

T

XXXXXXXXV

, where xk =

S

WWWWWWWWU

u1k

...
uk,k

xk+1,k

...
xnk

T

XXXXXXXXV

In order to accomplish this, we add ≠¸jk times row k to row j, where we choose
the coe�cient

¸jk = xjk

ukk

for all k < j Æ n. We see that we can write the matrix Lk as a Gauss transformation

Lk = In ≠ · keT

k
=

S

WWWWWWWWWWWWWWWU

1 0 · · · 0 0 · · · 0 0

0 1
. . .

...
...

. . .
... 0

...
. . . . . . 0 0 · · · 0 0

0 · · · 0 1 0 · · · 0 0

0 · · · 0 ≠¸k+1,k 1
. . .

...
...

0 · · · 0 ≠¸k+2,k 0
. . . 0 0

...
. . .

...
...

...
. . . 1 0

0 · · · 0 ≠¸n,k 0 · · · 0 1

T

XXXXXXXXXXXXXXXV

, where · k =

S

WWWWWWWWU

0
...
0

¸k+1,k

...
¸n,k

T

XXXXXXXXV

Notice that we can now calculate the inverse

L
≠1
k

= In + · keT

k

by simply changing the sign in front of the · k. This is a generalization of the inverse
of a shear matrix

1
Sik(c)

2≠1
= Sik(≠c)
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Lesson 16: The LU Factorization- Suggested Problems List

For Problems 1 - 3, consider the following model for a 4-mass, 5-spring chain. Note
that positive positions and positive displacements are marked in the downward
direction. Assume the acceleration due to earth’s gravity is g = 9.8m/s

2. Also
assume that the mass of each spring is zero and that these springs satisfy the ideal
version of Hooke’s law exactly.

m1

M
as

s1

m2

M
as

s2

m3

M
as

s3

m4

M
as

s4

≠
x

+
k1 = 5 N

m

k2 = 10 N
m

k3 = 10 N
m

k4 = 10 N
m

k5 = 5 N
m

Spring Mass Chain at equilibrium
NO external force (0 sec)

x1(0)

x2(0)

x3(0)

x4(0)

m1

m2

m3

m4

k1

k2

k3

k4

k5

Spring Mass Chain at equilibrium with
force due to earth’s gravity (at T sec)

≠
u

+

x1(T )

x2(T )

x3(T )

x4(T )

1. Recall our model for the mass-spring chain above is given by

M ü(t) + Ku(t) = fe(t).

Find the sti�ness matrix K that results from this model.

2. Find the LU factorization of K = LU .

3. For each of the mass vectors m œ R4 given below, solve the associated square
linear-systems problems K ·u = fe using the LU factorization of K. Explicitly
show the forward and backward substitution steps in each case.

S

WWU

m1
m2
m3
m4

T

XXV =

S

WWU

0.025
0.050
0.050
0.025

T

XXV(a)

S

WWU

m1
m2
m3
m4

T

XXV =

S

WWU

0.050
0.100
0.100
0.050

T

XXV(b)

S

WWU

m1
m2
m3
m4

T

XXV =

S

WWU

0.050
0.025
0.025
0.050

T

XXV(c)
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4. Solve each of the following linear-system problem by transforming the matrix
equation Ax = b into an equivalent equation Ux = y by multiplying both
sides of the equation by appropriate unit lower-triangular matrices and then
applying the backward substitution algorithm.

A.

S

WWU

5 2 3 6
≠10 ≠7 ≠5 ≠10
≠5 ≠11 1 4
10 16 0 ≠2

T

XXV

¸ ˚˙ ˝
A

·

S

WWU

x1
x2
x3
x4

T

XXV

¸ ˚˙ ˝
x1

=

S

WWU

≠11
20
7

≠14

T

XXV

¸ ˚˙ ˝
b1

B.

S

WWU

5 2 3 6
≠10 ≠7 ≠5 ≠10
≠5 ≠11 1 4
10 16 0 ≠2

T

XXV

¸ ˚˙ ˝
A

·

S

WWU

x1
x2
x3
x4

T

XXV

¸ ˚˙ ˝
x2

=

S

WWU

≠10
17

≠11
10

T

XXV

¸ ˚˙ ˝
b2

C.

S

WWU

5 2 3 6
≠10 ≠7 ≠5 ≠10
≠5 ≠11 1 4
10 16 0 ≠2

T

XXV

¸ ˚˙ ˝
A

·

S

WWU

x1
x2
x3
x4

T

XXV

¸ ˚˙ ˝
x3

=

S

WWU

16
≠23

21
≠20

T

XXV

¸ ˚˙ ˝
b3

D. What do you notice about the unit lower-triangular matrices that you
used to transform each of the systems in parts A, B, and C above?
What do you notice about each of the matrices U that result from these
transformations?

5. Consider the following matrix and vectors

A =

S

WWU

5 2 3 6
≠10 ≠7 ≠5 ≠10
≠5 ≠11 1 4
10 16 0 ≠2

T

XXV , b1 =

S

WWU

≠11
20
7

≠14

T

XXV , b2 =

S

WWU

≠10
17

≠11
10

T

XXV , b3 =

S

WWU

16
≠23

21
≠20

T

XXV .

A. Find unit lower-triangular matrices L1, L2, L3 œ R4◊4 such that L3 · L2 ·
L1 · A = U , where the matrix U is upper triangular matrix.

B. Use your work in part a. to find the LU factorization of the matrix A.
C. Use the LU factorization to solve the three linear systems problems:

A · x = bk for k = 1, 2, 3
D. Compare your work in problem 1 with your work in problem 2. If you

are solving a single nonsingular linear-systems problem with coe�cient
matrix A, is it necessary to find the LU Factorization of this matrix?
What if you are solving many di�erent nonsingular linear-systems prob-
lems with the same matrix A and a variety of di�erent right-hand side
vectors bk? What is the benefit of solving these multiple systems by
finding the LU Factorization of A (rather than transforming each system
individually)?
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6. Consider the following matrices:

A3 =

S

U
2 ≠1 0

≠1 2 ≠1
0 ≠1 2

T

V , A4 =

S

WWU

2 ≠1 0 0
≠1 2 ≠1 0

0 ≠1 2 ≠1
0 0 ≠1 2

T

XXV , A5 =

S

WWWWU

2 ≠1 0 0 0
≠1 2 ≠1 0 0

0 ≠1 2 ≠1 0
0 0 ≠1 2 ≠1
0 0 0 ≠1 2

T

XXXXV

A. For k = 3, 4, 5, use a sequence of matrix multiplications to transform
Ak into upper-triangular Uk. Specifically identify unit lower-triangular
matrices L1, L2, ..., Lt needed to make this transformation in each case.

B. Find the LU factorization of the matrix A from above.

7. Let ¸ik œ R for all i, k œ N and define the matrices L1, L2, L3 œ R4◊4 be given
by

L2 =

S

WWU

1 0 0 0
¸21 1 0 0
¸31 0 1 0
¸41 0 0 1

T

XXV = I4 + · 1 · eT

1 , where · 1 =

S

WWU

0
¸21
¸31
¸41

T

XXV .

L2 =

S

WWU

1 0 0 0
0 1 0 0
0 ¸32 1 0
0 ¸42 0 1

T

XXV = I4 + · 2 · eT

2 , where · 2 =

S

WWU

0
0

¸32
¸42

T

XXV .

L3 =

S

WWU

1 0 0 0
0 1 0 0
0 0 1 0
0 0 ¸43 1

T

XXV = I4 + · 3 · eT

3 , where · 3 =

S

WWU

0
0
0

¸43

T

XXV .

A. Prove L
≠1
k

=
!
I4 ≠ · k · eT

k

"
for k = 1, 2, 3.

B. Prove L
≠1
k

· L
≠1
j

= I4 ≠ · k · eT

k
≠ · j · eT

j
for all j < k .

C. Use parts A and B to conclude the

L = L
≠1
3 · L

≠1
2 · L

≠1
1 =

S

WWU

1 0 0 0
≠¸21 1 0 0
≠¸31 ≠¸32 1 0
≠¸41 ≠¸42 ≠¸43 1

T

XXV .

D. Is the following statement true or false. Justify your answer with explicit
analysis and reasoning:

L1 · L2 · L3 =

S

WWU

1 0 0 0
¸21 1 0 0
¸31 ¸32 1 0
¸41 ¸42 ¸43 1

T

XXV .
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