Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1. (T) F For square matrices A, B, if $A B=I$, then A is invertible.
2. T F For matrices A, B with proper dimensions, If $A B=I_{n}$, then A is invertible.
3. T F Every square matrix is a product of elementary matrices.
4. (T) F Every invertible matrix is a product of elementary matrices.
5. (T) F If A is a 3×3 matrix with three pivot positions, then for some $t \in \mathbb{N}$ there exist elementary matrices $E_{1}, E_{2}, \ldots, E_{t} \in \mathbb{R}^{3}$ such that $E_{t} \cdots E_{2} \cdot E_{1} \cdot A=I_{3}$.
6. T F Any square matrix with nonzero diagonal entries must be invertible.

Free Response

1. Show that the matrix $A \in \mathbb{R}^{5 \times 5}$ given by

$$
A=\left[\begin{array}{lllll}
0 & a & 0 & 0 & 0 \\
b & 0 & c & 0 & 0 \\
0 & d & 0 & e & 0 \\
0 & 0 & f & 0 & g \\
0 & 0 & 0 & h & 0
\end{array}\right]
$$

in not invertible for any nonzero values $a, b, c, d, e, f, g, h \in \mathbb{R}$. Explain your solution.

Solution: We know that $A \in \mathbb{R}^{5 \times 5}$ is invertible if and only if the columns of A are linearly independent. Consider the columns

$$
A(:, 1)=\left[\begin{array}{l}
0 \\
b \\
0 \\
0 \\
0
\end{array}\right], \quad A(:, 3)=\left[\begin{array}{c}
0 \\
c \\
0 \\
d \\
0
\end{array}\right], \quad A(:, 5)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
g \\
0
\end{array}\right]
$$

By assumption we know $b \neq 0$ and $g \neq 0$. We claim that these is a nonzero linear combinations of these three column that produces a zero output. To this end, define scalar weights

$$
\alpha_{1}=-\frac{c}{b}, \quad \alpha_{2}=-\frac{f}{g}
$$

Consider the linear combination

$$
\alpha_{1} A(:, 1)+A(:, 3)+\alpha_{2} A(:, 5)=\left(-\frac{c}{b}\right) \cdot\left[\begin{array}{l}
0 \\
b \\
0 \\
0 \\
0
\end{array}\right]+1 \cdot\left[\begin{array}{l}
0 \\
c \\
0 \\
d \\
0
\end{array}\right]+\left(-\frac{f}{g}\right) \cdot\left[\begin{array}{l}
0 \\
0 \\
0 \\
g \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Thus we see that the vector

$$
\mathbf{x}=\left[\begin{array}{c}
\alpha_{1} \\
0 \\
1 \\
0 \\
\alpha_{2}
\end{array}\right]
$$

satisfies the equation $A \cdot \mathbf{x}=\mathbf{0}$. This immediately implies that the columns of A must be linearly dependent and thus A is not invertible.

