5.4 The Invertible Matrix Theorem

Theorem 27: The Invertible Matrix Theorem: Part 1

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix with real entries. Then, the following statements are equivalent. That is, for a given matrix A, the statements are either all true or all false.

- 1. There is a matrix $C \in \mathbb{R}^{n \times n}$ such that $CA = I_n$.
- 2. There is a matrix $D \in \mathbb{R}^{n \times n}$ such that $AD = I_n$.
- 3. A is an invertible matrix (A is nonsingular).
- 4. A is row equivalent to an upper triangular matrix with nonzero entries on the main diagonal.
- 5. A has n pivot positions.
- 6. The matrix equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = 0$.
- 7. The columns of A are linearly independent. In other words

$$\{A(:,1), A(:,2), ..., A(:,n)\}$$

is a linearly independent set of vectors.

- 8. The linear transformation $f(\mathbf{x}) = A\mathbf{x}$ is one-to-one.
- 9. The equation $A\mathbf{x} = \mathbf{b}$ has a unique solutions for all $\mathbf{b} \in \mathbb{R}^n$.
- 10. The columns of A span \mathbb{R}^n .
- 11. The linear transformation $f(\mathbf{x}) = A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- 12. The matrix A^T is invertible.

Proof. Provide a full and thorough proof of all equivalencies from "easiest" to most difficult. $\hfill \Box$

Theorem 28: The Invertible Matrix Theorem: Part 2

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix with real entries. Then, the following statements are equivalent. That is, for a given matrix A, the statements are either all true or all false.

- 13. The determinant of A is not zero: set $(A) \neq 0$.
- 14. The columns of A form a basis for \mathbb{R}^n
- 15. The column space of A is \mathbb{R}^n : $\operatorname{Col}(A) = \mathbb{R}^n$.
- 16. The dimension of the column space of A is n: $\dim(\operatorname{Col}(A)) = n$
- 17. The rank of A is n: rank(A) = n.
- 18. The null space of A is $\{\mathbf{0}\}$: Null $(A) = \{\mathbf{0}\}$.
- 19. The dimension of the null space of A is 0: $\dim(\text{Nulll}(A)) = 0$.
- 20. The orthogonal complement of the column space of A is $\{\mathbf{0}\}$. We can write this as

$$(\operatorname{Col}(A))^{\perp} = \{\mathbf{0}\}.$$

21. The orthogonal complement of the null space of A is \mathbb{R}^n : We write this

 $(\operatorname{Null}(A))^{\perp} = \mathbb{R}^n.$

22. The row space of A is \mathbb{R}^n : Row $(A) = \mathbb{R}^n$.

Theorem 29: The Invertible Matrix Theorem: Part 3

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix with real entries. Then, the following statements are equivalent. That is, for a given matrix A, the statements are either all true or all false.

- 23. The number 0 is not an eigenvalue of A.
- 24. The matrix A has n non-zero singular values.

