5.4 The Invertible Matrix Theorem

Theorem 27: The Invertible Matrix Theorem: Part 1

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix with real entries. Then, the following statements are equivalent. That is, for a given matrix A, the statements are either all true or all false.

1. There is a matrix $C \in \mathbb{R}^{n \times n}$ such that $C A=I_{n}$.
2. There is a matrix $D \in \mathbb{R}^{n \times n}$ such that $A D=I_{n}$.
3. A is an invertible matrix (A is nonsingular).
4. A is row equivalent to an upper triangular matrix with nonzero entries on the main diagonal.
5. A has n pivot positions.
6. The matrix equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=0$.
7. The columns of A are linearly independent. In other words

$$
\{A(:, 1), A(:, 2), \ldots, A(:, n)\}
$$

is a linearly independent set of vectors.
8. The linear transformation $f(\mathbf{x})=A \mathbf{x}$ is one-to-one.
9. The equation $A \mathbf{x}=\mathbf{b}$ has a unique solutions for all $\mathbf{b} \in \mathbb{R}^{n}$.
10. The columns of A span \mathbb{R}^{n}.
11. The linear transformation $f(\mathbf{x})=A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
12. The matrix A^{T} is invertible.

Proof. Provide a full and thorough proof of all equivalencies from "easiest" to most difficult.

Theorem 28: The Invertible Matrix Theorem: Part 2

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix with real entries. Then, the following statements are equivalent. That is, for a given matrix A, the statements are either all true or all false.
13. The determinant of A is not zero: $\operatorname{set}(A) \neq 0$.
14. The columns of A form a basis for \mathbb{R}^{n}
15. The column space of A is $\mathbb{R}^{n}: \operatorname{Col}(A)=\mathbb{R}^{n}$.
16. The dimension of the column space of A is $n: \operatorname{dim}(\operatorname{Col}(A))=n$
17. The rank of A is $n: \operatorname{rank}(A)=n$.
18. The null space of A is $\{\mathbf{0}\}: \operatorname{Null}(A)=\{\mathbf{0}\}$.
19. The dimension of the null space of A is $0: \operatorname{dim}(\operatorname{Nulll}(A))=0$.
20. The orthogonal complement of the column space of A is $\{\mathbf{0}\}$. We can write this as

$$
(\operatorname{Col}(A))^{\perp}=\{\mathbf{0}\}
$$

21. The orthogonal complement of the null space of A is \mathbb{R}^{n} : We write this

$$
(\operatorname{Null}(A))^{\perp}=\mathbb{R}^{n}
$$

22. The row space of A is $\mathbb{R}^{n}: \operatorname{Row}(A)=\mathbb{R}^{n}$.

Theorem 29: The Invertible Matrix Theorem: Part 3

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix with real entries. Then, the following statements are equivalent. That is, for a given matrix A, the statements are either all true or all false.
23. The number 0 is not an eigenvalue of A.
24. The matrix A has n non-zero singular values.

