Answers

Lesson 13 Warm Up Quiz

Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1. T F For square $A, B \in \mathbb{R}^{n \times n}$, if $A B=B A$ and if A is invertible, then $A^{-1} B=B A^{-1}$.
2. T F If $A, B \in \mathbb{R}^{n \times n}$ invertible, then the product $A B \in \mathbb{R}^{n \times n}$ is also invertible.
3. T F If A and B are square and invertible, then $A B$ is invertible, and $(A B)^{-1}=A^{-1} B^{-1}$.
4. T If $A \in \mathbb{R}^{n \times n}$ is singular, then the columns of A form a basis for \mathbb{R}^{n}.
5. T F If $A, B \in \mathbb{R}^{n \times n}$ invertible, then the sum $A+B \in \mathbb{R}^{n \times n}$ is also invertible.
6. $\quad \mathrm{T} \quad \mathrm{F} \quad$ The transpose of a square $n \times n$ shear matrix $S_{i j}(c)$ is the inverse of that matrix. In other words $S_{j i}(c)=\left(S_{i j}(c)\right)^{-1}$.
7. T F Any square matrix $A \in \mathbb{R}^{n \times n}$ with nonzero diagonals is invertible
8. T F If A is invertible and $c \neq 0$ is a real number, then $(c A)^{-1}=c A^{-1}$.
9. T F Let $A \in \mathbb{R}^{n \times n}$. If $\left\{E_{j}\right\}_{j=1}^{k} \subseteq \mathbb{R}^{n \times n}$ is a set of elementary matrices such that

$$
E_{k} E_{k-1} \cdots E_{2} E_{1} A=I_{n}
$$

then $A^{-1}=E_{1}^{-1} E_{2}^{-1} \cdots E_{k-1}^{-1} E_{k}$.
10. T F Let $n \in \mathbb{N}$ and suppost $i, j, k \in\{1,2, \ldots, n\}$ with $i \neq j$. Let $P_{i j} \in \mathbb{R}^{n \times n}$ be the permutation matrix that transposes rows i and j. Then

$$
\left(P_{i j} \cdot S_{j k}(c)\right)^{-1}=S_{k j}(-c)
$$

11. T F If a square matrix $A \in \mathbb{R}^{n \times n}$ has a zero on its main diagonal, then it is singular.
12. T $\mathrm{F} \quad$ If A is a 3×3 matrix and the equation $A \mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ has a unique solution then A is invertible.
13. (T) F Let $n \in \mathbb{N}$ and suppose $i, k \in\{1,2, \ldots, n\}$ with $i \neq k$. Then

$$
\left(\left(S_{i k}(c)\right)^{T}\right)^{-1}=S_{k i}(-c)
$$

14. T F For square $A, B \in \mathbb{R}^{n \times n}$, if $A B=B A$ and if A is invertible, then $A B^{-1}=B^{-1} A$.
15. (T) F If $A, B \in \mathbb{R}^{n \times n}$ invertible, then the product $A B \in \mathbb{R}^{n \times n}$ is also invertible.
16. T F If $A \in \mathbb{R}^{3 \times 3}$ has three pivot columns, then it is possible to find invertible matrices $E_{1}, E_{2}, \ldots, E_{p} \in \mathbb{R}^{3 \times 3}$ such that

$$
E_{p} E_{p-1} \cdots E_{2} E_{1} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Multiple Choice For the problems below, circle the correct response for each question.

1. Let $M=\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 2 & 2 & 2 & 0 \\ 2 & 2 & 2 & 2\end{array}\right]$ Then M^{-1} is given by which of the following:
A. $\left[\begin{array}{rrrr}0.5 & 0 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0.5\end{array}\right]$
B. $\left[\begin{array}{rrrr}0.5 & 0 & 0 & 0 \\ -0.5 & 0.5 & 0 & 0 \\ 0 & -0.5 & 0.5 & 0 \\ 0 & 0 & -0.5 & 0.5\end{array}\right]$
C. $\left[\begin{array}{rrrr}-0.5 & 0 & 0 & 0 \\ -0.5 & -0.5 & 0 & 0 \\ 0 & -0.5 & -0.5 & 0 \\ 0 & 0 & -0.5 & -0.5\end{array}\right]$
D. $\left[\begin{array}{rrrr}-0.5 & 0 & 0 & 0 \\ 0.5 & -0.5 & 0 & 0 \\ 0 & 0.5 & -0.5 & 0 \\ 0 & 0 & 0.5 & -0.5\end{array}\right]$
E. None of these.
2. Let $M=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1\end{array}\right]$ Then M^{-1} is given by which of the following:
A. $M^{-1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 1 & 1 & 0 \\ -2 & 5 & 1\end{array}\right]$
B. $M^{-1}=\left[\begin{array}{rrr}-1 & 0 & 0 \\ 1 & -1 & 0 \\ -2 & 5 & -1\end{array}\right]$
C. $M^{-1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 1 & 1 & 0 \\ -3 & 5 & 1\end{array}\right]$
D. $M^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 5 & 1\end{array}\right]$.
E. None of these.
3. Let $A=\left[\begin{array}{rrr}1 & 0 & 1 \\ 2 & -1 & 1 \\ 2 & -2 & 1\end{array}\right]$. If $B=A^{-1}$, which of the following gives $B(1,:)$?
A. $\left.\begin{array}{lll}1 & -2 & 1\end{array}\right]$
B. $\left[\begin{array}{lll}-1 & 2 & -1\end{array}\right]$
C. $\left.\begin{array}{lll}2 & -2 & 1\end{array}\right]$
D. $\left.\begin{array}{lll}1 & 0 & 1\end{array}\right]$
E. $\left.\begin{array}{lll}1 & 1 & -1\end{array}\right]$
4. Let $B=\overbrace{\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 7 & 1\end{array}\right]}^{E_{3}} \cdot \overbrace{\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -5 & 0 & 1\end{array}\right]}^{E_{2}} \cdot \overbrace{\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]}^{E_{1}}$ Find B^{-1} :
A. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ -2 & 1 & 1 & 0 \\ 1 & -5 & 7 & 1\end{array}\right]$
B. $\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 2 & -1 & 1 & 0 \\ -1 & 5 & -7 & 1\end{array}\right]$
C. $\left[\begin{array}{rrrr}1 & -3 & 2 & -1 \\ 0 & 1 & -1 & 5 \\ 0 & 0 & 1 & -7 \\ 0 & 0 & 0 & 1\end{array}\right]$
D. $E_{3}^{-1} \cdot E_{2}^{-1} \cdot E_{1}^{-1}$
E. $\left[\begin{array}{rrrr}1 & 3 & -2 & 1 \\ 0 & 1 & 1 & -5 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 1\end{array}\right]$
5. Let $M=\left[\begin{array}{rrr}1 & -1 & 2 \\ 0 & 1 & -5 \\ 0 & 0 & 1\end{array}\right]$. Then M^{-1} is given by which of the following:
A. $\left[\begin{array}{rrr}1 & 1 & -2 \\ 0 & 1 & 5 \\ 0 & 0 & 1\end{array}\right]$
B. $\left[\begin{array}{rrr}-1 & 1 & -2 \\ 0 & -1 & 5 \\ 0 & 0 & -1\end{array}\right]$
C. $\left[\begin{array}{rrr}1 & 1 & -3 \\ 0 & 1 & 5 \\ 0 & 0 & 1\end{array}\right]$
D. $\left[\begin{array}{lll}1 & 1 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 1\end{array}\right]$
E. $\left[\begin{array}{rrr}1 & -1 & -2 \\ 0 & 1 & -5 \\ 0 & 0 & 1\end{array}\right]$
6. Let $A=\left[\begin{array}{rrr}2 & 1 & 1 \\ 4 & 5 & 2 \\ 2 & -2 & 0\end{array}\right]$. If we let \mathbf{x} be the solution \mathbf{x} to the linear system

$$
A \mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
$$

and calculate $c=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$, then the constant c is given by
A. $c=1$
B. $c=-1$
C. $c=0$
D. $c=2$
E. None of these.
7. Let $B=A^{-1}$ where

$$
A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
-3 & 1 & 2 \\
-2 & 2 & 1
\end{array}\right]
$$

Then, which of the following gives $(B(1,:))^{T}$?
A. A^{-1} does not exist
B. $\left[\begin{array}{lll}3 & 1 & 4\end{array}\right]$
C. $\left.\begin{array}{lll}3 & 4 & -5\end{array}\right]$
D. $\left[\begin{array}{r}3 \\ 4 \\ -5\end{array}\right]$
E. $\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$
8. Consider the 3×3 matrix A from the problem above. Suppose we use this matrix in the following linear-systems problem

$$
\left[\begin{array}{rrr}
3 & 1 & -2 \\
-3 & 1 & 0 \\
-6 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
5 \\
5
\end{array}\right]
$$

If \mathbf{x} is the solution to this linear-system problem, then which of the following gives the value of

$$
\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right] ?
$$

A. -3
B. -2
C. -1
D. 0
E. 2

Free Response

1. Let $\mathbf{w} \in \mathbb{R}^{n}$ be a vector such that $\mathbf{w}^{T} \mathbf{w}=1$. The $n \times n$ matrix

$$
H=I_{n}-2 \mathbf{w} \mathbf{w}^{T}
$$

is called a Householder matrix.
A. Show that $H=H^{T}$ (in other words, show that H is symmetric).
B. How that $H^{-1}=H^{T}$.
2. Let $n, i, k \in \mathbb{N}$ such that $1 \leq i \leq n, 1 \leq k \leq n$ and $i \neq k$. Suppose that $c \in \mathbb{R}$.
(a) Show $\left(S_{i k}(c)\right)^{-1}=S_{i k}(-c)$

Solution: Suppose $i, k, n \in \mathbb{N}$ such that $1 \leq i, k \leq n$ with $i \neq k$ and suppose $c \in \mathbb{R}$ is a nonzero constant. Let's begin by proving that $\left(S_{i k}(c)\right)^{-1}=S_{i k}(-c)$ by multiplying $S_{i k}(c)$ by the stated inverse to produce I_{n}. Consider

$$
\begin{aligned}
S_{i k}(c) \cdot S_{i k}(-c) & =\left(I_{n}+c \mathbf{e}_{i} \mathbf{e}_{k}^{T}\right) \cdot\left(I_{n}-c \mathbf{e}_{i} \mathbf{e}_{k}^{T}\right) \\
& =I_{n}-c \mathbf{e}_{i} \mathbf{e}_{k}^{T}+c \mathbf{e}_{i} \mathbf{e}_{k}^{T} \cdot I_{n}-c^{2}\left(\mathbf{e}_{i} \mathbf{e}_{k}^{T}\right) \cdot\left(\mathbf{e}_{i} \mathbf{e}_{k}^{T}\right) \\
& =I_{n}-c \mathbf{e}_{i} \mathbf{e}_{k}^{T}+c \mathbf{e}_{i} \mathbf{e}_{k}^{T}-c^{2} \mathbf{e}_{i}\left(\mathbf{e}_{k}^{T} \mathbf{e}_{i}\right) \mathbf{e}_{k}^{T}
\end{aligned}
$$

Notice that the matrix-matrix product $\mathbf{e}_{k}^{T} \mathbf{e}_{i}$ results in a scalar output equivalent to the inner product $\mathbf{e}_{k} \cdot \mathbf{e}_{i}$. If $j \in \mathbb{N}$ with $1 \leq j \leq n$ we know $\mathbf{e}_{j} \in \mathbb{R}^{n}$ is the j th elementary basis vector with all zero entries except the j th coefficient, which has value equal to one. Because of this structure and since $i \neq k$ by assumption, we see that $\mathbf{e}_{k}^{T} \mathbf{e}_{i}=\mathbf{e}_{k} \cdot \mathbf{e}_{i}=0$. With this we have,

$$
S_{i k}(c) \cdot S_{i k}(-c)=I_{n}-c \mathbf{e}_{i} \mathbf{e}_{k}^{T}+c \mathbf{e}_{i} \mathbf{e}_{k}^{T}=I_{n}
$$

We conclude that $\left(S_{i k}(c)\right)^{-1}=S_{i k}(-c)$.
(b) Show $\left(D_{i}(c)\right)^{-1}=D_{i}\left(\frac{1}{c}\right)$

Solution: Let's establish that $\left(D_{i}(c)\right)^{-1}=D_{i}\left(\frac{1}{c}\right)$. To this end, consider

$$
\begin{aligned}
D_{i}(c) \cdot D_{i}(1 / c) & =\left(I_{n}+(c-1) \mathbf{e}_{i} \mathbf{e}_{i}^{T}\right) \cdot\left(I_{n}+(1 / c-1) \mathbf{e}_{i} \mathbf{e}_{i}^{T}\right) \\
& =I_{n} \cdot\left(I_{n}+(1 / c-1) \mathbf{e}_{i} \mathbf{e}_{i}^{T}\right)+(c-1) \mathbf{e}_{i} \mathbf{e}_{i}^{T} \cdot\left(I_{n}+(1 / c-1) \mathbf{e}_{i} \mathbf{e}_{i}^{T}\right) \\
& =I_{n}+(1 / c-1) \mathbf{e}_{i} \mathbf{e}_{i}^{T}+(c-1) \mathbf{e}_{i} \mathbf{e}_{i}^{T}+(c-1)(1 / c-1) \mathbf{e}_{i} \mathbf{e}_{i}^{T} \mathbf{e}_{i} \mathbf{e}_{i}^{T} \\
& =I_{n}+(1 / c+c-2) \mathbf{e}_{i} \mathbf{e}_{i}^{T}+(c-1)(1 / c-1) \mathbf{e}_{i} \mathbf{e}_{i}^{T}
\end{aligned}
$$

Using distributivity of scalar multiplication over addition, we see

$$
(c-1)(1 / c-1)=2-c-1 / c
$$

Thus, we have

$$
D_{i}(c) \cdot D_{i}(1 / c)=I_{n}+(1 / c+c-2) \mathbf{e}_{i} \mathbf{e}_{i}^{T}+(2-c-1 / c) \mathbf{e}_{i} \mathbf{e}_{i}^{T}=I_{n}
$$

By definition of the matrix inverse, we have $\left(D_{i}(c)\right)^{-1}=D_{i}\left(\frac{1}{c}\right)$
3. Recall that Cramer's formula for the inverse of a 2×2 matrix $A \in \mathbb{R}^{2}$ is given by

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{rr}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

where $\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}$.
(a) Using a sequence of elementary matrices, transform A into I_{2}. Show each matrix you use.

Solution: Suppose $A \in \mathbb{R}^{2 \times 2}$ is nonsingular. Let

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

In order to produce the inverse of A, let's transform A into I_{2} using elementary matrices. To this end, let $\delta=a_{11} a_{22}-a_{21} a_{12}$. As we will see in Chapter 7 , we call δ the determinant of A and $\delta \neq 0$ if and only if A is invertible. As we will see in the next section, since A is invertible, we know that either $a_{11} \neq 0$ or $a_{21} \neq 0$. Thus, let's assume that $a_{11} \neq 0$. Now, we reduce A to I_{2}. Consider the step-by-step calculation beginning with the product

$$
S_{21}\left(-a_{21} / a_{11}\right) \cdot A=\left[\begin{array}{cc}
1 & 0 \\
-a_{21} / a_{11} & 1
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & \delta / a_{11}
\end{array}\right]
$$

Now we consider

$$
D_{2}\left(a_{11} / \delta\right) \cdot D_{1}\left(1 / a_{11}\right)=\left[\begin{array}{cc}
1 / a_{11} & 0 \\
0 & a_{11} / \delta
\end{array}\right]
$$

We can multiply our product by this diagonal matrix to find

$$
\left[\begin{array}{cc}
1 / a_{11} & 0 \\
0 & a_{11} / \delta
\end{array}\right]\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & \delta / a_{11}
\end{array}\right]=\left[\begin{array}{cc}
1 & a_{12} / a_{11} \\
0 & 1
\end{array}\right]
$$

Finally, multiplying this entire product on the left-hand side by we see

$$
\left[\begin{array}{cc}
1 & -a_{12} / a_{11} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & a_{12} / a_{11} \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(b) Write A^{-1} as a product of the elementary matrices and confirm Cramer's Rule.

Solution: From our work in part (a) above, we see

$$
A^{-1}=S_{12}\left(-a_{12} / a_{11}\right) \cdot D_{2}\left(a_{11} / \delta\right) \cdot D_{1}\left(1 / a_{11}\right) \cdot S_{21}\left(-a_{21} / a_{11}\right) .
$$

The reduction of matrix A into I_{2} above gives a constructive mechanism to explicitly calculate A^{-1}. We begin by finding the product

$$
\left(D_{2}\left(a_{11} / \delta\right) \cdot D_{1}\left(1 / a_{11}\right)\right) \cdot S_{21}\left(-a_{21} / a_{11}\right)
$$

given as

$$
\left[\begin{array}{cc}
1 / a_{11} & 0 \\
0 & a_{11} / \delta
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-a_{21} / a_{11} & 1
\end{array}\right]=\left[\begin{array}{cc}
1 / a_{11} & 0 \\
-a_{21} / \delta & a_{11} / \delta
\end{array}\right]
$$

We can calculate A^{-1} using the product

$$
\left[\begin{array}{cc}
1 & -\frac{a_{12}}{a_{11}} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{a_{11}} & 0 \\
-\frac{a_{21}}{\delta} & \frac{a_{11}}{\delta}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{a_{11}}+\frac{a_{21} a_{12}}{a_{11} \delta} & -\frac{a_{12}}{a_{11}} \\
-\frac{a_{21}}{\delta} & \frac{a_{11}}{\delta}
\end{array}\right]=\frac{1}{\delta}\left[\begin{array}{rr}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

This is exactly what we wanted to show.

