5.3 Matrix Inverses

invertible is called singular.

Definition 5.6: Inverse of a Square Matrix

Let A € R™*™ be a square matrix. We say that A is invertible if and only
if there exists a matrix C' € R"*"™ such that

A-C=

where I,, is the n x n identify matrix. We call C = A~! the inverse of
A. An invertible matrix is called non-singular while a matrix that is not

C-A=1,

Matrix inverses are the matrix-matrix multiplicative inverse. Two-sided inverses

are defined only for square matrices.

EXAMPLE 5.3.1

Let’s consider the matrices

2 0
A=l

1 0}
cz[z .
0 3

Notice that C is the inverse of A, denoted as C = A™!, since

2 0

A-C= [0 3

EXAMPLE 5.3.2

Let’s consider the matrices

1
A=1 0
-3

O = O
= o O

We see that C = A~! because

A-C=

W O =
(el N el
— O O
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s -0
1=
0 3 0 1
|
1 00
Cc=10 1 0},
3 0 1
170 0 1 00
0 1.0/=|010
3 01 0 01
|
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Theorem 23: Inverses of Elementary Matrices

Let i,k,n € N such that 1 <4,k <n with i # k and let ¢ € R with ¢ # 0.
Then, the inverses of each of the elementary matrices are given below:

-1
1. Shear matrices: (Sik(c)> = Six(—c)
-1
2. Transposition matrices: (R- ) = P£

1
3. Dilation matrices: (Dl(c)> =D; (%)

Proof. Suppose i, k,n € N such that 1 < i,k <n with ¢ # k and suppose ¢ € R is a
Z1
nonzero constant. Let’s begin by proving that (Sik(c)) = Sik(—¢). To do so, we

will multiply S;x(c) by the stated inverse and show that we produce [,,. Consider

Sik(c) - Sik(—c) = (In +ce; e;‘g) . (In —ce; eg)
=1, (I, —ce;e}) +ceyel - (I, —ce;ef)
=1,—ce; eg +ce; ef I, = ¢ (ei e{) . (e,- e;‘f)

=1, —ceie} +eeel — e (eg ei) el

Notice that the matrix-matrix product e{ e; results in a scalar output equivalent
to the inner product e - ;. If j € N with 1.< j < n we know e; € R" is the jth
elementary basis vector with all zero entries except the jth coefficient, which has
value equal to one. Because of this structure and since i # k by assumption, we see
that ef e; = ey - e; = 0. With this we have,

Sik(€) +Six(—c) =1, —ce; e;‘g +ce; eg =1,

We conclude that (Sm(c)) = Sir(—c).
—1
Next, let’s prove (Bk> = Pf,;. We remark that PiT = P;;, be definition. To

this end, let C = P - Pjx. Then for j € N with 1 < j < n, we can find the jth
column of C' using the column-partition version of matrix-vector multiplication.
Consider

e; ifj#iandj#k
C(:j) = P - Pix(:,4),  with  Py(,5) =< ep ifj=i
Thus, using these definitions we see that

0(7.7) = €j

-1
for all 1 < j < n and we conclude that C' = I,, and we’ve established (P1k> = Pg,;.
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-1
Finally, let’s establish that (Dl(c)> =D; (%) To this end, consider

Di(c)-D;(1/c) = (In+ (c—1)e; eiT) (I + (1/c—1) e eZT)
=1, (In+(/c—1) e;e] )+ (c—1)e;e] - (I, + (1/c—1) e;e])

=I,+(/c—1)eel +(c—1Dejel +(c—1)(1/c—1) e;el e;e]

i

=L, +(1/ctec—2) ejef +(c—1) (1/c—1)eief
Using distributivity of scalar multiplication over addition, we see
(c—1)(1fe=1)=2—-c—1/c
Thus, we have

Di(c)-D;i (1/c) =TI, + (1/c+c—2) ejel +(2—c—1/c)e;el =1,

-1
By definition of the matrix inverse, we have (Dl(c)) =D; () O

EXAMPLE 5.3.3

The theorem above gives us a very concrete mechanism to invert any elementary.
matrix E. Choose any elementary matrix and you can immediately produce the
inverse. I

As we will see, elementary matrices are very special precisely because they are
invertible. One of the most powerful realizations in the solution to linear systems is
to translate any system Ax = b into an equivalent system Ux = y using elementary
matrices. This process is a gold mine for producing solution sets.
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Theorem 24: Cramer’s Rule for Inverse of a 2 x 2 System

Consider the 2 x 2 matrix with real entries given by

A~ = 1 [ a22 _a12:|

where § = a11a20 — as1a12.

Proof. Suppose A € R?*2 is nonsingular. Let

A— [au a12:|

a21  a22

In order to produce the inverse of A, let’s transform A into Is using elementary
matrices. To this end, let § = aj1a29 — as1a12. As we will see in Chapter 7, we
call § the determinant of A and § # 0 if and only if A is invertible. As we will see
in the next section, since A is invertible, we know that either ai; # 0 or as; # 0.
Thus, let’s assume that a7 # 0. Now, we reduce A to I,. Consider the step-by-step
calculation beginning with the product

1 0] a1 a1z ayy  a12
S — . A = -
21 (—a21/an1) {—azl/an 1] [a21 GQJ [ 0 5/6111]

Now we consider

Ds (an/0) - D1 (1/ann) = 1/311 a/l(l)/6:|

We can multiply our product by this diagonal matrix to find

1/aqy 0 air a1z | [1 aiz/an
0 CL11/(5 0 5/0,11_ - 0 1

Finally, multiplying this entire product on the left-hand side by we see

b =l -

Thus, we see that A~1+ A = I, with
ATl = S12 (*012/011) - Dy (a11/5) - Dy (1/1111) - So1 (*021/011) .

The reduction of matrix A into I above gives a constructive mechanism to
explicitly calculate A=!. We begin by finding the product

(DQ (a11/6) - Dy (1/6111)) - So1 (—ag1/ai1)

given as
1/&11 0 1 0 o 1/0,11 0
0 (111/5 —agl/a,n 1 B —a21/6 (111/5

© Jeffrey A. Anderson 234 vS520190403



We can calculate A~! using the product

Gt 1 0 1 azare
a arn ajr  apd
a1 a a
0 1 a1 ap _ag
1) 6 §

This is exactly what we wanted to show.

EXAMPLE 5.3.4

a2
ann | 1 [ a2 —012]
T8 |—a a
an 6 21 11
)

O

Show how to use this formula to solve mass-spring chain displacement problem with

known input weights.
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Theorem 25: Properties of Matrix Inverses

Let A, B € R™*™ be square, nonsingular matrices. Then
1. The matrix A~! is unique

2. The linear-system problem Ax = b has a unique solution.
-1
3. A B is invertible and (A . B) =B1.A71

4. (AT = (AT = 4T

5. A~! can be written as a product of elementary matrices

For more fun properties see Piziak and Odell p. 18 -19 Theorem 1.2°& 1.3

Theorem 26: RREF Solves the Linear-System Problem

Let Ax = b be a given linear system problem with Ux = y the equivalent
system with U = RREF(A). Then, the solution sets to-these two linear
systems problems are identical.
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