
5.3 Matrix Inverses

Definition 5.6: Inverse of a Square Matrix

Let A œ Rn◊n be a square matrix. We say that A is invertible if and only
if there exists a matrix C œ Rn◊n such that

A · C = C · A = In

where In is the n ◊ n identify matrix. We call C = A
≠1 the inverse of

A. An invertible matrix is called non-singular while a matrix that is not
invertible is called singular.

Matrix inverses are the matrix-matrix multiplicative inverse. Two-sided inverses
are defined only for square matrices.

EXAMPLE 5.3.1
Let’s consider the matrices

A =
5
2 0
0 3

6
, C =

5 1
2 0
0 1

3

6
.

Notice that C is the inverse of A, denoted as C = A
≠1, since

A · C =
5
2 0
0 3

6 5 1
2 0
0 1

3

6
=

5
1 0
0 1

6

EXAMPLE 5.3.2
Let’s consider the matrices

A =

S

U
1 0 0
0 1 0

≠3 0 1

T

V , C =

S

U
1 0 0
0 1 0
3 0 1

T

V ,

We see that C = A
≠1 because

A · C =

S

U
1 0 0
0 1 0

≠3 0 1

T

V

S

U
1 0 0
0 1 0
3 0 1

T

V =

S

U
1 0 0
0 1 0
0 0 1

T

V
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Theorem 23: Inverses of Elementary Matrices

Let i, k, n œ N such that 1 Æ i, k Æ n with i ”= k and let c œ R with c ”= 0.
Then, the inverses of each of the elementary matrices are given below:

1. Shear matrices:
1

Sik(c)
2≠1

= Sik(≠c)

2. Transposition matrices:
1

Pik

2≠1
= P

T

ik

3. Dilation matrices:
1

Di(c)
2≠1

= Di

! 1
c

"

Proof. Suppose i, k, n œ N such that 1 Æ i, k Æ n with i ”= k and suppose c œ R is a
nonzero constant. Let’s begin by proving that

1
Sik(c)

2≠1
= Sik(≠c). To do so, we

will multiply Sik(c) by the stated inverse and show that we produce In. Consider

Sik(c) · Sik(≠c) =
!
In + c ei eT

k

"
·
!
In ≠ c ei eT

k

"

= In ·
!
In ≠ c ei eT

k

"
+ c ei eT

k
·
!
In ≠ c ei eT

k

"

= In ≠ c ei eT

k
+ c ei eT

k
· In ≠ c

2 !
ei eT

k

"
·

!
ei eT

k

"

= In ≠ c ei eT

k
+ c ei eT

k
≠ c

2 ei

!
eT

k
ei

"
eT

k

Notice that the matrix-matrix product eT

k
ei results in a scalar output equivalent

to the inner product ek · ei. If j œ N with 1 Æ j Æ n we know ej œ Rn is the jth
elementary basis vector with all zero entries except the jth coe�cient, which has
value equal to one. Because of this structure and since i ”= k by assumption, we see
that eT

k
ei = ek · ei = 0. With this we have,

Sik(c) · Sik(≠c) = In ≠ c ei eT

k
+ c ei eT

k
= In

We conclude that
1

Sik(c)
2≠1

= Sik(≠c).

Next, let’s prove
1

Pik

2≠1
= P

T

ik
. We remark that P

T

ik
= Pik be definition. To

this end, let C = Pik · Pik. Then for j œ N with 1 Æ j Æ n, we can find the jth
column of C using the column-partition version of matrix-vector multiplication.
Consider

C(:, j) = Pik · Pik(:, j), with Pik(:, j) =

Y
]

[

ej if j ”= i and j ”= k

ek if j = i

ei if j = k

Thus, using these definitions we see that

C(:, j) = ej

for all 1 Æ j Æ n and we conclude that C = In and we’ve established
1

Pik

2≠1
= P

T

ik
.
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Finally, let’s establish that
1

Di(c)
2≠1

= Di

! 1
c

"
. To this end, consider

Di(c) · Di (1/c) =
!
In + (c ≠ 1) ei eT

i

"
·
!
In + (1/c ≠ 1) ei eT

i

"

= In ·
!
In + (1/c ≠ 1) ei eT

i

"
+ (c ≠ 1) ei eT

i
·
!
In + (1/c ≠ 1) ei eT

i

"

= In + (1/c ≠ 1) ei eT

i
+ (c ≠ 1) ei eT

i
+ (c ≠ 1) (1/c ≠ 1) ei eT

i
ei eT

i

= In + (1/c + c ≠ 2) ei eT

i
+ (c ≠ 1) (1/c ≠ 1) ei eT

i

Using distributivity of scalar multiplication over addition, we see

(c ≠ 1) (1/c ≠ 1) = 2 ≠ c ≠ 1/c.

Thus, we have

Di(c) · Di (1/c) = In + (1/c + c ≠ 2) ei eT

i
+ (2 ≠ c ≠ 1/c) ei eT

i
= In

By definition of the matrix inverse, we have
1

Di(c)
2≠1

= Di

! 1
c

"

EXAMPLE 5.3.3
The theorem above gives us a very concrete mechanism to invert any elementary
matrix E. Choose any elementary matrix and you can immediately produce the
inverse.

As we will see, elementary matrices are very special precisely because they are
invertible. One of the most powerful realizations in the solution to linear systems is
to translate any system Ax = b into an equivalent system Ux = y using elementary
matrices. This process is a gold mine for producing solution sets.
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Theorem 24: Cramer’s Rule for Inverse of a 2 ◊ 2 System

Consider the 2 ◊ 2 matrix with real entries given by

A =
5
a11 a12
a21 a22

6

Then, the inverse of matrix A is given by

A
≠1 = 1

”

5
a22 ≠a12

≠a21 a11

6

where ” = a11a22 ≠ a21a12.

Proof. Suppose A œ R2◊2 is nonsingular. Let

A =
5
a11 a12
a21 a22

6

In order to produce the inverse of A, let’s transform A into I2 using elementary
matrices. To this end, let ” = a11a22 ≠ a21a12. As we will see in Chapter 7, we
call ” the determinant of A and ” ”= 0 if and only if A is invertible. As we will see
in the next section, since A is invertible, we know that either a11 ”= 0 or a21 ”= 0.
Thus, let’s assume that a11 ”= 0. Now, we reduce A to I2. Consider the step-by-step
calculation beginning with the product

S21 (≠a21/a11) · A =
5

1 0
≠a21/a11 1

6 5
a11 a12
a21 a22

6
=

5
a11 a12
0 ”/a11

6

Now we consider

D2 (a11/”) · D1 (1/a11) =
5
1/a11 0

0 a11/”

6

We can multiply our product by this diagonal matrix to find
5
1/a11 0

0 a11/”

6 5
a11 a12
0 ”/a11

6
=

5
1 a12/a11
0 1

6

Finally, multiplying this entire product on the left-hand side by we see
5
1 ≠a12/a11
0 1

6 5
1 a12/a11
0 1

6
=

5
1 0
0 1

6

Thus, we see that A
≠1 · A = I2 with

A
≠1 = S12 (≠a12/a11) · D2 (a11/”) · D1 (1/a11) · S21 (≠a21/a11) .

The reduction of matrix A into I2 above gives a constructive mechanism to
explicitly calculate A

≠1. We begin by finding the product
1

D2 (a11/”) · D1 (1/a11)
2

· S21 (≠a21/a11)

given as
5
1/a11 0

0 a11/”

6 5
1 0

≠a21/a11 1

6
=

5
1/a11 0

≠a21/” a11/”

6
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We can calculate A
≠1 using the product

S

WU
1 ≠a12

a11

0 1

T

XV

S

WWU

1
a11

0

≠a21
”

a11
”

T

XXV =

S

WWU

1
a11

+ a21a12
a11”

≠a12
a11

≠a21
”

a11
”

T

XXV = 1
”

5
a22 ≠a12

≠a21 a11

6

This is exactly what we wanted to show.

EXAMPLE 5.3.4
Show how to use this formula to solve mass-spring chain displacement problem with
known input weights.
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Theorem 25: Properties of Matrix Inverses

Let A, B œ Rn◊n be square, nonsingular matrices. Then

1. The matrix A
≠1 is unique

2. The linear-system problem Ax = b has a unique solution.

3. A · B is invertible and
1

A · B

2≠1
= B

≠1 · A
≠1

4.
!
A

T
"≠1 =

!
A

≠1"T = A
≠T

5. A
≠1 can be written as a product of elementary matrices

For more fun properties see Piziak and Odell p. 18 -19 Theorem 1.2 & 1.3

Theorem 26: RREF Solves the Linear-System Problem

Let Ax = b be a given linear system problem with Ux = y the equivalent
system with U = RREF(A). Then, the solution sets to these two linear
systems problems are identical.
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