Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1. \quad T F Any system of n linear equations in n variables has at most n solutions.
2. T F Inconsistent linear systems must have more than one solution.
3. T F There exists a real matrix A such that the linear system of equations $A \mathbf{x}=\mathbf{0}$ has exactly two solutions.
4. (T) F Consider the linear systems problem

$$
A \mathbf{x}=\mathbf{b}
$$

where matrix $A \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^{m}$ are given and vector $\mathbf{x} \in \mathbb{R}^{n}$ is unknown and desired. Then, the two fundamental questions we want to answer when beginning our work on this problem are:
i. Existence: Does a solution to this system exist?
ii. Uniqueness: Is there a unique solution to this system?
5. T F Consider the linear systems problem

$$
A \mathbf{x}=\mathbf{b}
$$

where matrix $A \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^{m}$ are given and vector $\mathbf{x} \in \mathbb{R}^{n}$ is unknown and desired. If this linear system is inconsistent, there may be an $\mathbf{x} \in \mathbb{R}^{n}$ such that

$$
\|\mathbf{b}-A \mathbf{x}\|_{2}=0 .
$$

6. T F Let $A \in \mathbb{R}^{m \times n}$. The homogeneous equation $A \mathbf{x}=\mathbf{0}$ is consistent if and only if $\operatorname{dim}(\operatorname{Col}(A))=n$.
7. (T) F Let A, \mathbf{b} be given. If $f(\mathbf{x})=A \mathbf{x}$, then a solution to the corresponding set of linear system $A \mathbf{x}=\mathbf{b}$ exists if and only if \mathbf{b} is in the range of f

Multiple Choice For the problems below, circle the correct response for each question.

1. Suppose that $L \in \mathbb{R}^{5 \times 5}$ is a general lower triangular system with nonzero lower triangular elements including nonzero diagonal elements. Suppose $\mathbf{b} \in \mathbb{R}^{5}$ has all nonzero coefficients. To solve the linear system $L \mathbf{x}=\mathbf{b}$ using forward substitution requires how many operations (each addition or multiplication between two real numbers counts as one operation).
A. 5
B. 10
C. 15
D. 20
E. 25
2. Let $A=\left[\begin{array}{rrr}1 & 2 & 1 \\ 2 & t & 0 \\ 1 & 0 & -1\end{array}\right]$. Find the set of values of t for which the homogeneous system of linear equations

$$
A \mathrm{x}=\mathbf{0}
$$

has a non-zero solution:
A. $t=1$
B. $t \neq 1$
C. $t=2$
D. $t=1$ or $t=2$
E. $t \neq 2$
3. Stephen Curry plays for the Golden State Warriors as a professional basket ball player in the National Basketball Association (NBA). Suppose we analyze Curry's shooting technique. Below we see a diagram that highlights the typical trajectory of one of Mr. Curry's free-throw shots.

Model of Steph Curry's Free Throw

Distance x from release position (ft)	Height h of basketball above ground (ft)
0	7.25
8	13.50
14	10.00

Our data points for this shooting trajectory $\left\{\left(x_{i}, h_{i}\right)\right\}_{i=1}^{3}$ represent the observed height h_{i} of our basketball when the ball has moved x_{i} feet in the horizontal direction for $i=1,2,3$. From our study of introductory physics, we choose to model the trajectory of the basket ball using the function

$$
h(x)=a_{0}+a_{1} x+a_{2} x^{2} .
$$

Find the corresponding linear-systems problem to produce our desired polynomial model.
A. $\left[\begin{array}{rrr}1 & 0 & 0 \\ 1 & 8 & 64 \\ 1 & 14 & 196\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{c}7.25 \\ 13.50 \\ 10.00\end{array}\right]$
B. $\left[\begin{array}{c}0 \\ 8 \\ 14\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{l}7.25 \\ 13.50 \\ 10.00\end{array}\right]$
C. $\left[\begin{array}{rrr}1 & 7.25 & 52.5625 \\ 1 & 13.50 & 182.2500 \\ 1 & 10.00 & 100.0000\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{c}0 \\ 8 \\ 14\end{array}\right]$
D. $\left[\begin{array}{lll}a_{0} & a_{1} & a_{2} \\ a_{0} & a_{1} & a_{2} \\ a_{0} & a_{1} & a_{2}\end{array}\right]\left[\begin{array}{c}0 \\ 8 \\ 14\end{array}\right]=\left[\begin{array}{c}7.25 \\ 13.50 \\ 10.00\end{array}\right]$
E. $\left[\begin{array}{rrr}1 & 0 & 7.25 \\ 1 & 8 & 13.50 \\ 1 & 14 & 10.00\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
4. Solve the linear-systems problem design to model the path of Stephen Curry's free throw shot from above. With your solution, determine how high the ball was in the air after traveling $x=5$ feet in the horizontal direction. In other words, approximate $h(5)$ using the solution of your linear systems problem. Round your answer to the nearest tenth (round to the nearest one digit to the RIGHT of the decimal place).
A. -23.7 ft
B. 0 ft
C. 12.6 ft
D. 12.9 ft
E. 11.9 ft
5. Consider the following spring-mass system:

Suppose that you are apply masses 1,2 , and 3 to the mass-spring chain illustrated above such that

$$
\mathbf{m}=\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]=\left[\begin{array}{l}
0.200 \\
0.400 \\
0.200
\end{array}\right]
$$

measured in kg. Assume the acceleration due to earth's gravity is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Also assume that the mass of each spring is zero and that these springs satisfy the ideal version of Hooke's law. Then, which of the following gives the displacement vector

$$
\mathbf{u}=\left[\begin{array}{l}
u_{1}(T) \\
u_{2}(T) \\
u_{3}(T)
\end{array}\right]
$$

measured in meters at $t=T$ when the system is at equilibrium under the force of gravity on earth.
A. $\left[\begin{array}{l}-0.196 \\ -0.147 \\ -0.196\end{array}\right]$
B. $\left[\begin{array}{l}0.098 \\ 0.098 \\ 0.049\end{array}\right]$
C. $\left[\begin{array}{l}0.196 \\ 0.245 \\ 0.196\end{array}\right]$
D. $\left[\begin{array}{l}0.020 \\ 0.025 \\ 0.020\end{array}\right]$
E. $\left[\begin{array}{l}0.098 \\ 0.098 \\ 0.098\end{array}\right]$

For Problems 16, consider the following model for a 3-mass, 4 -spring chain. Note that positive positions and positive displacements are marked in the downward direction. Assume the acceleration due to earth's gravity is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Also assume that the mass of each spring is zero and that these springs satisfy the ideal version of Hooke's law exactly.

6. Recall that the initial position vector \mathbf{x}_{0} and the mass vector \mathbf{m} store the positions, measured in meters, of each mass at equilibrium when $t=0$ and the mass measurements, measured in kg , respectively. Suppose we measure

$$
\mathbf{x}_{0}=\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]=\left[\begin{array}{l}
0.25 \\
0.50 \\
0.75
\end{array}\right] \quad \mathbf{m}=\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]=\left[\begin{array}{c}
0.100 \\
0.200 \\
0.100
\end{array}\right]
$$

Which of the following gives the vector $\mathbf{x}(T)=\left[\begin{array}{lll}x_{1}(T) & x_{2}(T) & x_{3}(T)\end{array}\right]^{T}$ as measured in meters, used to store the positions of each mass at equilibrium when when $t=T$? If necessary, please round your answers to the nearest 3 places after the decimal.
A. $\left[\begin{array}{l}0.196 \\ 0.392 \\ 0.196\end{array}\right]$
B. $\left[\begin{array}{l}0.446 \\ 0.892 \\ 0.946\end{array}\right]$
C. $\left[\begin{array}{l}0.020 \\ 0.400 \\ 0.200\end{array}\right]$
D. $\left[\begin{array}{l}0.270 \\ 0.540 \\ 0.770\end{array}\right]$
E. $\left[\begin{array}{l}0.054 \\ 0.108 \\ 0.554\end{array}\right]$

