
Chapter 5

The Nonsingular Linear-Systems

Problem

5.1 Linear Systems of Equations

Definition 5.1: The Square Linear-Systems Problem

Let n œ N. Let A œ Rn◊n be a given square, nonsingular matrix and
b œ Rn be a given vector. Then the square linear-systems problem is to
find an unknown vector x œ Rn such that

A · x = b.

Let’s define the function f : Rn æ Rn such that f(x) = A · x. Notice that we
have the following:

Domain(f) = Rn

Codomain(f) = Rn

Rng(f) = {b œ Rn : b = A · x for some x œ Rn}.

Remember from our discussion of the matrix-vector multiplication, an equivalent
description of the range of this function f was given by

Rng(f) = Span {A(:, k)}n

k=1.

In other words, we say that the b is in the range of f if and only if we can write b
as a linear combination of the columns of the matrix A.

When studying the square linear-systems problem, we need to create our square
matrix A and a vector b. We then need to calculate all possible vectors x such
that Ax = b or to conclude that no such x exists. From this standpoint, we can
view the linear-systems problem as the inverse of the matrix-vector multiplication
problem.

In this section, we will explore the various aspects of this problem, discover
a number of applications that give rise to the square linear-systems problem and
begin to create theory to help us generate a solution to such systems.
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We begin our study of techniques to solve square linear systems with a discussion
of problems that contain very special, structured matrices.

EXAMPLE 5.1.1
Let’s create a piecewise linear graph to model our gas consumption in 2015. Below
is a data set consisting of the author’s gasoline consumption from January 1, 2015
at 12am to December 31, 2015 at 11:59pm.

Data point i in 2015 Day number di Cumulative volume of
(by Number) at end of month of gas gi (in gallons)

1 0 0.000
2 31 41.490
3 59 98.804
4 90 143.622

The first coordinate di of each data point (di, gi) represents the number of days
of the year that have past at the beginning of month i. For example, we see that
d1 = 0 because zero days have past on January 1, 2015 at 12am. Next we have that
d2 = 31 since there are 31 that have past by on the morning of February 1, 2015 at
12:00am. Similarly, d3 = 59 since on March 1, 2015 at 12:00am a total of 59 days
have past since the start of the year (2015 was not a leap year). The corresponding
values of gi denote the cumulative gas consumed realized by the author at the
beginning of month i.

We begin our modeling problem by graphing each data point (di, gi) on a single
access to compare the day of the year to the cumulative gallons consumed on that
day.

Suppose want to interpolate linearly between the first three collected data points.
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In other words, suppose we want to create a piecewise linear polynomial

P (d) =

Y
]

[

p1(d) if d1 Æ d Æ d2
p2(d) if d2 Æ d Æ d3
p3(d) if d3 Æ d Æ d4

where P (d) is the cumulative gallons we expect the author to have used on day
number d in the first quarter of 2015. Each segment of the piecewise linear function
given by

pi(d) = mi(d ≠ di) + gi

for any di Æ d Æ di+1 where i = 1, 2, 3. The slopes mi are unknown. Our model
P (d) should “connects the dots” using lines. In other word, to create a continuous
piecewise linear function, we impose two conditions:

pi(di) = gi, pi(di+1) = gi+1.

Thus, for each i, we have

gi+1 = pi(di+1) = mi(di+1 ≠ di) + gi

These conditions result in a system of 3 equations in 3 unknowns:

g2 ≠ g1 = m1(d2 ≠ d1)
g3 ≠ g2 = m2(d3 ≠ d2)
g4 ≠ g3 = m3(d4 ≠ d3)

We write these linear equations in matrix form to set up a linear-systems problem
S

U
31 0 0
0 28 0
0 0 31

T

V

S

U
m1
m2
m3

T

V =

S

U
41.490
57.314
44.818

T

V

The individual coe�cients mi of the solution vector m œ R3 represent the average
gallons used per day used during month i for i = 1, 2, 3. The entry mi of the solution
can also be interpreted as the slope of the line segment connecting data points
(di, gi) to (di+1, gi+1) for i = 1, 2, 3. Because our coe�cient matrix is diagonal and
all entires on the main diagonal are nonzero, we know our linear-systems problem
in this example has a unique solution.
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The process outlines in the example above is a special case of a much more
general modeling technique known as linear spline interpolations. Let’s see how we
might create a general linear piecewise polynomial to interpolate (n + 1) collected
data points.

EXAMPLE 5.1.2
Suppose we run an experiment and collect n + 1 data points

{(ti, yi)}n+1
i=1 ™ R.

Let’s create a model to interpolate any value between two collected points (ti, yi)
and (ti+1, yi+1) for i = 1, 2, ..., n. We can do so by using a set of individual line
segments. In other words, we can connect the dots using a piecewise linear function.
Given any ti Æ t Æ ti+1, we define the line that connects our to points using the
point-slope form of a line as follows

y ≠ yi = mi(t ≠ ti)

where mi is the unknown slope of this line. Based on the definition of mi and by
doing some basic arithmetic, we see we can write the equation for this line pi(t) as
follows:

pi(t) = mi(t ≠ ti) + yi.

If we try to connect the dots to create a continuous piecewise function, we will
impose two conditions:

pi(ti) = yi

pi(ti+1) = yi+1.

Thus, for each i, we have

yi+1 = pi(ti+1) = mi(ti+1 ≠ ti) + yi

These conditions result in a system of n equations in n unknowns:

y2 ≠ y1 = m1(t2 ≠ t1)
y3 ≠ y2 = m2(t3 ≠ t2)

...
yn+1 ≠ yn = mn(tn+1 ≠ tn).

We can create the corresponding linear-systems problem by stating these equations
in matrix form

S

WWWWU

(t2 ≠ t1) 0 · · · 0

0 (t3 ≠ t2)
. . .

...
...

. . . . . . 0
0 · · · 0 (tn+1 ≠ tn)

T

XXXXV

S

WWWU

m1
m2

...
mn

T

XXXV
=

S

WWWU

(y2 ≠ y1)
(y3 ≠ y2)

...
(yn+1 ≠ yn)

T

XXXV

Now that we’ve state the most general form of this piecewise linear interpolation
problem, let’s create a specific model to bring to life one possible application.
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Suppose we have a square linear-systems problem given by

Dx = b

where the coe�cient matrix D œ Rn◊n is square and diagonal and b œ Rn. Then,
we can categorize each solution to this system based on the sparsity structure of D

and the nonzero entries of b. We see that our linear-systems problem has

i. No solution i� dii = 0 and bi ”= 0 for some i œ {1, 2, ..., n}

ii. A unique solution i� dii ”= 0 for all i œ {1, 2, ..., n}

iii. Infinitely many solutions i� dii = 0 AND bi = 0 for some i œ {1, 2, ..., n}

Using the structure of diagonal matrices, we can immediately classify the cardinality
of the solution set. More importantly, in the case that we have a unique solution,
we can calculate this solution very quickly as:

xi = bi

dii

, for all i = 1, 2, ..., n

Because of the beautiful simplicity of the solution, we consider square linear-systems
problems that have diagonal coe�cient matrices with nonzero entires to be the gold
standard of all linear-systems problems. If possible, we will work to transform all
matrices into diagonal form and solve accordingly. As we will see, this theme will
arise throughout our study of linear systems and beyond.
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As we’ve seen above, square linear-systems with diagonal coe�cient matrices
are wonderful. However, linear-systems problems that arise from mathematical
modeling rarely result in diagonal coe�cient matrices. More often than not, matrix
modeling results in a structured coe�cient matrix A. When attempting to solve
the corresponding linear-systems problem, we need to find a way to translate this
matrix into a much better form. While the idea of transforming our matrix into
diagonal form is appealing, these transformations often prove to be expensive in
practice. Instead, let’s look for the next best option, a square linear system

Ux = y

where U œ Rn◊n is upper-triangular.
As we will see in our discussion of solution sets for linear systems and in our

work with the LU Factorization of a square matrix, upper-triangular matrices play
a very special role in solving linear systems. For now, let’s investigate how we might
solve a 5 ◊ 5 system with an upper-triangular coe�cient matrix U .

EXAMPLE 5.1.3
Let’s look at a system of 5 linear equations in 5 unknowns that results in an upper-
triangular coe�cient matrix U . Suppose that the diagonal elements of U are nonzero
and consider the linear system

S

WWWWU

u11 u12 u13 u14 u15
0 u22 u23 u24 u25
0 0 u33 u34 u35
0 0 0 u44 u45
0 0 0 0 u55

T

XXXXV

S

WWWWU

x1
x2
x3
x4
x5

T

XXXXV
=

S

WWWWU

y1
y2
y3
y4
y5

T

XXXXV

Now, we can focus on the scalar versions of this matrix equation by looking at
the individual row entries of the left- and right-hand side. We see:

u11x1 + u12x2 + u13x3 + u14x4 + u15x5 = y1

0 + u22x2 + u23x3 + u24x4 + u25x5 = y2

0 + 0 + u33x3 + u34x4 + u35x5 = y3

0 + 0 + 0 + u44x4 + u45x5 = y4

0 + 0 + 0 + 0 + u55x5 = y5

We see that the last equation has only one unknown. Moreover, if uii ”= 0 for all
values of i, we solve for the unknown

x5 = 1
u55

· (y5)

We now know the value of coe�cient x5 and we have eliminated one of our un-
knowns. We move up to the second to last equation

u44x4 + u45x5 = y4, =∆ x4 = 1
u44

· (y4 ≠ u45x4)
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We continue with row 3 and solve for x3 by recognizing

u33x3 + u34x4 + u35x5 = y3, =∆ x3 = 1
u33

· (y3 ≠ u34x4 ≠ u35x5)

=∆ x3 = 1
u33

·

Q

ay3 ≠
5ÿ

j=4
u3jxj

R

b

Next, we find x2 using the formulas

u22x2 + u23x3 + u24x4 + u25x5 = y2, =∆ x2 = 1
u22

· (y2 ≠ u23x3 ≠ u24x4 ≠ u25x5)

=∆ x2 = 1
u22

·

Q

ay2 ≠
5ÿ

j=3
u2jxj

R

b

Finally, we use the pattern from our work above to solve for x1:

x1 = 1
u11

·

Q

ay1 ≠
5ÿ

j=2
u2jxj

R

b

We have now solved our entire linear systems problem for unknowns xi. This
process, described in general below, will be known as backward substitution.

In the example above, we describe the process of using backward substitution to
solve a special case of a 5 ◊ 5 linear-system with upper-triangular coe�cient matrix
U . We can generalize this process to solve n ◊ n upper-triangular systems.
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Theorem 20: Backward Substitution: Upper-Triangular Ux = y

Let Ux = y be a given linear-systems problem with upper-triangular
U œ Rn◊n and y œ Rn. If uii ”= 0 for all i œ {1, 2, ..., n}, then our linear-
system problem has a unique solution. Further, we can find this solution
using the following algorithm:

xn = yn

unn

xi = 1
uii

Q

ayi ≠
nÿ

j=i+1
uij xj

R

b

where i = (n ≠ 1), (n ≠ 2), ..., 2, 1.

Now that we have a mechanism to solve upper-triangular systems, let’s look at
a modeling problem in which we can create an upper-triangular system.

EXAMPLE 5.1.4
Suppose we are working on a physics laboratory project that asks us to explore the
e�ect of earth’s gravity on an object in free fall close to the earth’s surface. As part
of this lab, we record the height of a falling object at three separate instances in time.
The result is a three-point data set {(ti, hi)}3

i=1 where hi is the observed height of
our object, measured in meters, at time ti, measured in seconds, for i = 1, 2, 3. In
our case, we collect the following data

Measurement Time ti at which Measured height hi

Number data was collected (in seconds) in meters

1 3.0 3.000
2 3.3 2.559
3 3.6 1.236

Using this data, let’s create a mathematical model for our findings. First, let’s
decide which family of functions we will use to describe the behavior of our data.
We begin by graphing the data.
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We see that this data seems non-linear (doesn’t fit on a straight line). We might
guess that we can use a quadratic polynomial to model our data. Also, from our
study of introductory physics, we confirm that the family of quadratic functions
works nicely to model the position of a free-falling object close to earth’s surface.
Thus, we choose the general function

h(t) = a0 + a1t + a2t
2

to attempt to fit our data. We want to find the coe�cients a0, a1, a2 that most
closely fit our data so that

hi = h(ti) = a0 + a1ti + a2t
2
i

With this, we can set up one linear equation for each data point we’ve collected

3.000 = a0 + 3.0a1 + 9.00a2

2.559 = a0 + 3.3a1 + 10.89a2

1.236 = a0 + 3.6a1 + 12.96a2

We’ve set up this system of three equations and three unknowns by evaluating our
ideal model h(t) at each input time ti for i = 1, 2, 3. We can create our coe�cient
matrix for this linear system and re-write this linear system of equations as a linear-
systems problem using our knowledge of matrix-vector multiplication:

S

U
1 3.0 9.00
1 3.3 10.89
1 3.6 12.96

T

V

¸ ˚˙ ˝
A

S

U
a0
a1
a2

T

V

¸ ˚˙ ˝
x

=

S

U
3.000
2.559
1.236

T

V

¸ ˚˙ ˝
b

Notice that in the current form, our stated linear-systems problem is di�cult
to solve. Each equation involves all three variables and it’s not clear the best
mechanism we should use to attempt to isolate each variable. Instead of attempting
to solve our stated problem, let’s transform Ax = b into the system Ux = y where
U is an upper-triangular matrix. To do so, we introduce zeros to the strictly lower-
triangular portion of matrix A using elementary row operations.
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STEP 1: Identify the first pivot

Identify the entry with row index 1 and column index 1. Make sure this
entry is nonzero and refer to this nonzero entry as the first pivot of our
matrix. Refer to column 1 as the first pivot column.

In our case, we notice that a11 = 1 is nonzero. Thus, we call this entry our first
pivot, which we’ve circled in our coe�cient matrix below.

S

U
1 3.0 9.00
1 3.3 10.89
1 3.6 12.96

T

V

Further, we call the first column A(:, 1) of our coe�cient matrix A the first pivot
column. We now sequentially alter the structure of this pivot column to simplify
our system of equations.

STEP 2: Create zeros in all entries below the first pivot

Multiply the original system of equation by a sequence of shear matrices
to introduce zeros in all entries in our pivot column A(:, 1) that are under
the pivot.

In this case, we will need to zero both entries a21 and a31 in the first column.
S

U
1 3.0 9.00
1 3.3 10.89
1 3.6 12.96

T

V

We begin by transforming a21 to zero. We notice that we can accomplish our desired
transformation with the linear combination ≠1 A(1, :) + A(2, :) given by

≠1
#
1 3.0 9.00

$
+ 1

#
1 3.3 10.89

$
=

#
0 0.3 1.89

$

When changing row 2, we will not touch either rows 1 or 3. To accomplish this
transformation, we multiply our matrix A on the left-hand side by the appropriate
shear matrix Sik(c). Recall from our discussion of shear matrices in matrix-matrix
multiplication that we choose k = 1 and i = 2 because we introduce a zero by
adding a scalar multiple of row 1 to row 2. Moreover, we let c = ≠a21/a11 = ≠1
and thus multiply A on the left by S21(≠1) as follows

S

U
1 0 0

≠1 1 0
0 0 1

T

V

S

U
1 3.0 9.00
1 3.3 10.89
1 3.6 12.96

T

V

S

U
a0
a1
a2

T

V =

S

U
1 0 0

≠1 1 0
0 0 1

T

V

S

U
3.00

2.559
1.236

T

V

S

U
1 3.0 9.00
0 0.3 1.89
1 3.6 12.96

T

V

S

U
a0
a1
a2

T

V =

S

U
3.00

≠0.442
1.236

T

V
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Because we are working with an equation, anything we do to the left-hand side, we
must also do the right-hand side, resulting in a transformed right-hand side vector
S21(≠1) · b.

Let’s continue by creating a zero in the third row and first column given by
a31 = 1. To zero out this elements, we take the linear combination ≠1 A(1, :)+A(3, :)
given by

≠1
#
1 3.0 9.00

$
+ 1

#
1 3.6 12.96

$
=

#
0 0.6 3.96

$

When changing row 3, we will not touch either rows 1 or 2. Again, we realize this
transformation by multiplying by shear matrix S31(≠1). where we choose k = 1 and
i = 3 because we add a scalar multiple of row 1 to row 3. We set c = ≠a31/a11 = ≠1
to find

S

U
1 0 0
0 1 0

≠1 0 1

T

V

S

U
1 3.0 9.00
0 0.3 1.89
1 3.6 12.96

T

V

S

U
a0
a1
a2

T

V =

S

U
1 0 0
0 1 0

≠1 0 1

T

V

S

U
3.00

≠0.442
1.236

T

V

S

U
1 3.0 9.00
0 0.3 1.89
0 0.6 3.96

T

V

S

U
a0
a1
a2

T

V =

S

U
3.00

≠0.442
≠1.764

T

V

STEP 3: Identify next pivot

Move to the next row down and next column to the right. Call the first
nonzero entry in this row the second pivot. The column that this pivot is
in is called the second pivot column.

In the case of our transformed system, we see that the first nonzero entry in row
2 is in entry (2, 2). We identify this as our second pivot and circle this pivot in the
matrix below.

S

WU
1 3.0 9.00
0 0.3 1.89
0 0.6 3.96

T

XV

The second column of this matrix is the pivot column corresponding to our current
pivot. We will use our pivot to sequentially simplify the entries below our pivot in
this pivot column.

STEP 4: Create zeros in all entries below current pivot

Multiply the current system of equations by a sequence of shear matrices
to introduce zeros in all entries under the current pivot in our current
pivot column.
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Let’s zero out the coe�cients below our current pivot. In this case, we need
only introduce one zero in the third row and second column.

S

U
1 3.0 9.00
0 0.3 1.89
0 0.6 3.96

T

V

Here we multiply by the shear matrix S32(≠2), where we choose k = 2 and i = 3
because we will introduce a zero by adding a scalar multiple of row 2 to row 3. We
choose scalar c = ≠0.6/0.3 = ≠2 to find:

S

U
1 0 0
0 1 0
0 ≠2 1

T

V

S

U
1 3.0 9.00
0 0.3 1.89
0 0.6 3.96

T

V

S

U
a0
a1
a2

T

V =

S

U
1 0 0
0 1 0
0 ≠2 1

T

V

S

U
3.00

≠0.442
≠1.764

T

V

S

U
1 3.0 9.00
0 0.3 1.89
0 0.0 0.18

T

V

S

U
a0
a1
a2

T

V =

S

U
3.00

≠0.441
≠0.882

T

V

Now that we have simplified our current pivot column we move onto find the
next pivot column. We continue identifying pivots and introducing zeros below these
pivots via multiplication with shear matrices until we create an upper-triangular
matrix.

STEP 5: Repeat until all sub-diagonal elements are zero

Repeat steps 3 and 4 until our transformed linear system has an upper-
triangular coe�cient matrix U .

In our problem, we were lucky to have finished our reduction to upper-triangular
form in three steps resulting in the transformed linear system

S

U
1 3.0 9.00
0 0.3 1.89
0 0.0 0.18

T

V

¸ ˚˙ ˝
U

S

U
a0
a1
a2

T

V

¸ ˚˙ ˝
x

=

S

U
3.00

≠0.441
≠0.882

T

V

¸ ˚˙ ˝
y

In fact, we’ve tracked all three of the shear matrix multiplications needed to trans-
form our original matrix A into our upper triangular matrix U . Setting E =
S32(≠2) · S31(≠1) · S21(≠1), we see that we can map our original system to our
simplified system:

EA = U, Eb = y

We’ve designed our transformations so any solution of our new system Ux = y will
also be a solution to our original linear system of equations Ax = b.

Moreover, we can solve our equivalent system Ux = y using backward substitu-
tion. Let’s begin by solving for a2 by solving the linear equation resulting from row
3 of our matrix-vector equation. We see that for our equivalent system, we have

0.18a2 = ≠0.882 =∆ a2 = ≠0.882
0.18 = ≠4.9
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Using the linear equation resulting from row 2, we have

0.3a1 + 1.89a2 = ≠0.441 =∆ a1 = ≠0.441 ≠ 1.89 · (≠4.9)
0.3 = 29.4

Finally, we find a0 using the linear equation from row 1. We see

1a0 + 3a1 + 9a2 = 3 =∆ a0 = 3 ≠ 3 · 29.4 ≠ 9 · (≠4.9)
1 = ≠41.1

We used our equivalent system to find a model for our original data given by

h(t) = ≠4.9t
2 + 29.4t ≠ 41.1

We can use the method of completing the square to find

h(t) = ≠4.9t
2 + 29.4t ≠ 41.1

= ≠4.9(t2 + 6t + 9 ≠ 9) ≠ 41.1
= ≠4.9(t ≠ 3)2 + 3

This algebraic expression indicates that we probably started our experiment at t = 3
seconds dropping our object from an initial height of 3 meters. We also probably
used a zero initial velocity. Thus, we would conclude that our model h(t) is valid
for the domain [3, 3.782). The upper bound of this domain t ¥ 3.782s is the point
in time when the object hits the ground (assumed to be at zero height). We did
not model any bouncing activity, only the drop of the object.

It is important to notice here that the model we constructed EXACTLY matches
the data we collected. This is extremely rare and represents an ideal experiment.
As we will see, in almost all human experiments, there are many sources of error
that introduce noise into the data. Thus, normally when we work to model collected
data, we do not solve linear systems problems but instead work with least squares
problems. Much more about this subject will be discussed in our work with least
squares.

The previous example demonstrates regular Gaussian Elimination as a technique
to solve a system of n equations with n unknowns. This specialized technique works
well for a very special subclass of squares matrices known as regular matrices.
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Definition 5.2: Regular Matrix

Let A œ Rn◊n be a given, square matrix. We say that A is regular if it
reduces to an upper-triangular matrix U with all non-zero pivots in the
diagonal elements using only multiplication by shear matrices.

As we apply our regular Gaussian Elimination technique to regular matrices,
each successive pivot will appear on the diagonal and must be nonzero. In each
step, we use the pivot row to introduce zeros in the entries below our current pivot.
When the system is fully reduced to upper-triangular form, we then apply Backward
Substitution to find the solution to the original system.

It is important to notice that regular matrices are a special subclass of matrices.
In general, we will have to use more sophisticated reduction algorithms to deal with
some challenges posed by non-regular and non-square matrices. These issues are
discussed in the next section.

EXAMPLE 5.1.5
Let’s look back at our vector model for Hooke’s Law from Example 2.2.6. Recall,
that we collected data to track the displacement of the movable end of a spring
versus the applied mass. We used vector operations to create a vector model of
Hooke’s Law given by

f = ke.

Suppose that we generate a linear model for Hooke’s law using only two data points:

Mass Measured Calculated Measured
Number Mass Force Elongation

1 0.100kg 0.98N 0.051 m
2 0.200kg 1.96N 0.108 m

Then, we can create a linear model

f(u) = ke + b

for unknown scalars k and b. This experiment yields two linear equations, give by

0.051 k + b = 0.98
0.108 k + b = 1.96

In this case, we use our data to create a square linear-systems problem Ax = b in
the following way

5
1 0.051
1 0.108

6 5
b

k

6
=

5
0.98
1.96

6

We begin our reduction algorithm by identifying our first pivot in entry (1, 1).
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STEP 1: Identify the first pivot

Identify the entry with row index 1 and column index 1. Make sure this
entry is nonzero and refer to this nonzero entry as the first pivot of our
matrix. Refer to column 1 as the first pivot column.

In this case we see a11 = 1 is nonzero. Thus, we do not need to interchange
rows. Instead, we call the first column of this matrix our first pivot columns and
proceed with our elimination process.

5
1 0.051
1 0.108

6

STEP 2: Create zeros in all entries below the first pivot

Multiply the original system by a sequence of shear matrices to intro-
duce zeros in all entries below the first pivot.

In this case, we want to introduce a zero to entry a21.
5
1 0.051
1 0.108

6

We see that if we add ≠1 time row 1 to 1 times row 2 and put the result into
row 2, we will get a zero in entry (2, 1):

≠1 ·
#
1 0.051

$
+

#
1 0.108

$
=

#
0 0.057

$

We can accomplish this same transformation using multiplication with shear matrix
S21(≠1) as follows

5
1 0

≠1 1

6 5
1 0.051
1 0.108

6 5
b

k

6
=

5
1 0

≠1 1

6 5
0.98
1.96

6

5
1 0.051
0 0.057

6 5
b

k

6
=

5
0.98
0.98

6

STEP 3: Identify next pivot and introduce zeros under pivot

Move to the next row down and next column to the right. Call the first
nonzero entry in this row the second pivot. The column that this pivot is
in is called the second pivot column.

Because we started with a 2 ◊ 2 coe�cient matrix A, we have transformed
our system into the equivalent upper-triangular system and we can now solve this
system using backward substitution.
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In addition to solving problems involving upper-triangular matrices, we also will
use lower-triangular coe�cient matrices. In this case, we have the square linear-
systems problem

L · y = b

EXAMPLE 5.1.6
Let’s look at a system of 4 linear equations in 4 unknowns with a lower-triangular
coe�cient matrix L. Suppose that the diagonal elements of L are nonzero and
consider the linear system

S

WWU

¸11 0 0 0
¸21 ¸22 0 0
¸31 ¸32 ¸33 0
¸41 ¸42 ¸43 ¸44

T

XXV

S

WWU

y1
y2
y3
y4

T

XXV =

S

WWU

b1
b2
b3
b4

T

XXV

Now, we can focus on the scalar versions of this matrix equation by looking at
the individual row entries of the left- and right-hand side. We see:

¸11y1 + 0 + 0 + 0 = b1

¸21y1 + ¸22y2 + 0 + 0 = b2

¸31y1 + ¸32y2 + ¸33y3 + 0 = b3

¸41y1 + ¸42y2 + ¸43y3 + ¸44y4 = b4

We see that the last equation has only one unknown. Moreover, if uii ”= 0 for all
values of i, we solve for the unknown

y1 = 1
¸55

· (b1)

We now know the value of coe�cient y1 and we have eliminated one of our un-
knowns. We move up to the second equation

¸21y1 + ¸22y2+ = b2, =∆ y2 = 1
¸22

· (b4 ≠ ¸21y1)

We continue with row 3 and solve for y3 by recognizing

¸31y1 + ¸32y2 + ¸33y3 = b3 =∆ y3 = 1
¸33

· (b3 ≠ ¸31y1 ≠ ¸32y2)

=∆ y3 = 1
¸33

·

Q

ab3 ≠
2ÿ

j=1
¸3jyj

R

b

Finally, we find y4 using the formulas

¸41y1 + ¸42y2 + ¸43y3 + ¸44y4 = b4 =∆ y4 = 1
¸44

· (b4 ≠ ¸41y1 ≠ ¸42y2 ≠ ¸43y3)

=∆ y2 = 1
¸44

·

Q

ab4 ≠
3ÿ

j=1
u4jyj

R

b

We have now solved our entire linear systems problem for unknowns yi. This
process, described in general below, will be known as forward substitution.

c• Je�rey A. Anderson 224 vS20190403

DRAFT



Theorem 21: Forward Substitution: Lower-Triangular Lx = b

Let Lx = b be a given linear-systems problem with lower-triangular L œ
Rn◊n and b œ Rn. If uii ”= 0 for all i œ {1, 2, ..., n}, then our linear-system
problem has a unique solution. Further, we can find this solution using
the following algorithm:

x1 = b1
u11

xi = 1
uii

Q

abi ≠
i≠1ÿ

j=1
uij xj

R

b

where i = 2, 3, ..., n.

One of the major features of linear algebra is that systems of linear equations
are equivalent to matrix equations. That is, we can use algebra on matrices as a
method to solve systems of linear equations. Similarly, any matrix equation can be
realized as a linear systems equation.

Definition 5.3: Coe�cient Matrix of a linear system

Given a linear system of m equations and n unknowns

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

we can write this system as a linear systems problem Ax = b where the
matrix

A =

S

WWWU

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

T

XXXV

is known as the coe�cient matrix of our linear system.
The row dimension of the matrix A indicates the number of simulta-

neous equations to be solve while the column dimension of A counts the
number of unknown variables in our linear system.

The basic idea of solving a linear system of equations is to transform the linear
system into an equivalent matrix equation, then perform invertible matrix compu-
tations on the matrix equation to replace the given linear system with an equivalent
linear system that is much easier to solve.
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Definition 5.4: Fundamental Questions about Linear Systems

• Existence Question: Is the system of equations consistent: does
the linear system have at least one solution?

• Uniqueness Question: If a solution exists, is it the only one: does
the linear system have a unique solution?

Definition 5.5: Solution Set to Square Linear-Systems Problem

Suppose we are given a linear-systems problem

Ax = b

with A œ R
n◊n and b œ Rn. Then the solution set to this linear system is

the set of all possible solutions x œ Rn that solves our given linear system.
In other words, the solution set is given by

{x œ Rn : Ax = b}

Theorem 22

Let matrix A œ Rn◊n and vector b œ Rn be given. Suppose we want to
find the solution set to the linear-systems problem Ax = b Then, there
are only three possible scenarios:

i. An empty solution set: no exact solutions exist

ii. A solution set containing one element: a unique solution exists

iii. A solution set with infinite solutions: non-unique solutions exist

Moreover, if A is nonsingular, the square linear-systems problem will al-
ways have a unique solution.
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Lesson 12: Nonsingular Linear-Systems Problems- Suggested

Problems

1. Let A œ R5◊5 and b œ R5 be given by

A =

S

WWWWU

2 0 0 0 0
0 1 0 0 0
0 0 ≠4 0 0
0 0 0 6 0
0 0 0 0 12

T

XXXXV
, b =

S

WWWWU

≠2
3

12
54
6

T

XXXXV
.

A. Find x œ R5 such that Ax = b.
B. Is this solution unique? How do you know?

2. Let A œ R4◊4 and b œ R4 be given by

A =

S

WWU

1 0 ≠1 2
0 1 ≠3 4
0 0 ≠2 3
0 0 0 4

T

XXV , b =

S

WWU

1
2

≠1
4

T

XXV .

A. Find x œ R4 such that Ax = b using backward substitution. Show all
your steps, one-by-one.

B. Is this solution unique? How do you know?

3. Let A œ R3◊3 and b œ R3 be given by

A =

S

U
2 0 0
4 1 0
0 5 ≠4

T

V , b =

S

U
≠2

3
1

T

V .

A. Find x œ R3 such that Ax = b using forward substitution. Show all
your steps, one-by-one.

B. Is this solution unique? How do you know?

4. Re-solve the problem given in-class:
S

U
1 3 9.00
1 3.3 10.89
1 3.6 12.96

T

V

S

U
a0
a1
a2

T

V =

S

U
3.000
2.559
1.234

T

V

5. Exercise 1.1.1 pg 10

6. Exercise 1.1.3 pg 10

7. Exercise 1.1.11 pg 10
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8. Exercise 1.1.13 pg 10

9. Exercise 1.1.15 p. 10

10. Exercise 1.1.28 pg 11

11. Exercise 1.1.29 pg 11

12. Exercise 1.1.30 pg 11

13. Exercise 1.1.31 p. 11

14. Exercise 1.1.32 p. 11

15. Building a Better Roller Coaster: From Stewart’s Calculus

Remark: (This problem is designed students who want to earn above a 90%.)

The problem below demonstrates a simplifies “real-world” application that
gives rise to an 11 ◊ 11 linear system of equations. This is an example of a
much more general field of cubic spline interpolation. For interested readers,
I highly value the following text on this subject: A Practical Guide to Splines
by Carl de Boor.
Suppose you are asked to design the first ascent and drop for a new roller
coaster. By studying photographs of your favorite coasters, you decide to
make the slope of the ascent 0.8 and the slope of the drop ≠1.6. You decide
to connect these two straight stretches y = L1(x) and y = L2(x) with part of
a parabola y = f(x) = ax

2 + bx + c, where x and f(x) are measured in feet.
For the track to be smooth there can’t be abrupt changes in direction, so you
want the linear segments L1 and L2 to be the tangent to the parabola at the
transition points P and Q. To simplify the equations, you decide to place the
origin at point P .

A. Suppose the horizontal distance between P and Q is 100 ft. Write equa-
tions in a, b and c that will ensure that the track is smooth at the tran-
sition points.

B. Solve the equations in part (a) for a, b and c to find a formula for f(x).
C. Plot L1(x), f , and L2(x) to verify graphically that the transitions are

smooth.
D. Find the di�erence in elevation between P and Q.
E. The solution to problem 5 might look smooth, but it might not feel

smooth because the piecewise defined function [consisting of L1(x) for
x < 0, f(x) for 0 Æ x Æ 100, and L2(x) for x > 100] doesn’t have a
continuous second derivative. You decide to improve the design by using
a quadratic function q(x) = ax

2 +bx+c only on the interval 10 Æ x Æ 90
and connecting it to the linear functions by means of two cubic functions:

g(x) = kx
3 + lx

2 + mx + n, 0 Æ x < 10
h(x) = px

3 + qx
2 + rx + s, 90 < x <Æ 100

F. Write a system of equations in 11 unknowns that ensure that the func-
tions and their first two derivatives agree at the transition points.
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