Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1.	Т	F	Any two matrices that are conformable for matrix multiplication must have the same number of rows.
2.	Т	F	Let $A \in \mathbb{R}^{9 \times 6}$ and $X \in \mathbb{R}^{6 \times 7}$. Set
			$B = A \cdot X.$
			Then $B(:,3) = A(3,:) \cdot X$
3.	Т	F	Every square matrix is a product of elementary matrices.
4.	Т	F	If $A \in \mathbb{R}^{n \times n}$ is a diagonal matrix with nonzero diagonal entries, and $B \in \mathbb{R}^{m \times n}$, then multiplying B on the right by A scales the rows of B .
5.	Т	F	If A and B are $m \times n$ matrices, then the matrix products AB^T and A^TB are defined.
6.	Т	F	For rectangular matrices A, B, C , with proper dimensions, if $AB = C$ and C has 2 columns, then A has two columns.
7.	Т	F	If $A, B \in \mathbb{R}^{n \times n}$, then $(A - B)(A + B) = A^2 - B^2$.
8.	Т	F	For matrices B, C, D with proper dimensions, if $BC = BD$, then $C = D$.
9.	Т	F	For any $A, B \in \mathbb{R}^{n \times n}$, $AB = BA$.

Multiple Choice For the problems below, circle the correct response for each question.

1. Define the matrix $B \in \mathbb{R}^{4 \times 4}$ by the following product:

$$\begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Let $\mathbf{e}_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}^T$ and $\mathbf{e}_3 = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}^T$. Using this definition, we see that $b_{23} = \mathbf{e}_2^T B \mathbf{e}_3$ is given by which of the following:

A. $b_{23} = a_{43}$ B. $b_{23} = a_{24}$ C. $b_{23} = a_{23}$ D. $b_{23} = a_{44}$ E. None of these.

2. Let $A \in \mathbb{R}^{3 \times 3}$ be defined as

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix},$$

where A is nonsingular and $a_{11} \neq 0$. Suppose that we choose $E \in \mathbb{R}^{3 \times 3}$ such that the product EA has the following structure:

$$EA = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & * & * \\ 0 & * & * \end{bmatrix}.$$

In this case, the symbol * represents a real numbers. Then, E must be given by which of the following:

A.
$$E = S_{13} \left(-\frac{a_{13}}{a_{11}} \right) \cdot S_{13} \left(-\frac{a_{12}}{a_{11}} \right)$$

B. $E = S_{31} \left(\frac{a_{31}}{a_{11}} \right) \cdot S_{21} \left(\frac{a_{12}}{a_{11}} \right)$
C. $E = S_{31} \left(-\frac{a_{31}}{a_{11}} \right) \cdot S_{21} \left(-\frac{a_{12}}{a_{11}} \right)$
D. $E = S_{31} \left(-\frac{a_{11}}{a_{31}} \right) \cdot S_{21} \left(-\frac{a_{11}}{a_{21}} \right)$

E. None of these

3. Define the matrix $B \in \mathbb{R}^{4 \times 4}$ by the following product:

b_{11}	b_{12}	b_{13}	b_{14}		[0	0	0	1]	a_{11}	a_{12}	a_{13}	a_{14}	[0	0	1	0
b_{21}	b_{22}	b_{23}	b_{24}	_	1	0	0	0	a_{21}	a_{22}	a_{23}	a_{24}	0	0	0	1
b_{31}	b_{32}	b_{33}	b_{34}	_	0	1	0	0	a_{31}	a_{32}	a_{33}	a_{34}	1	0	0	0
b_{41}	b_{42}	b_{43}	b_{44}		0	0	1	0	a_{41}	a_{42}	a_{43}	a_{44}	0	1	0	0

Using this definition, we see that b_{42} is given by which of the following:

A. $b_{42} = a_{32}$ B. $b_{42} = a_{42}$ C. $b_{42} = a_{24}$ D. $b_{42} = a_{34}$ E. $b_{42} = a_{43}$

4. Let $A \in \mathbb{R}^{12 \times 7}$ and $B \in \mathbb{R}^{12 \times 6}$. Suppose $C = B^T A$. What are the dimensions of C(:,2)?

A. 7×1	B. 6×1	C. 6×7	D. 7×6	E. 1×6

5.	Which of the followi	ng represents th	e matrix-ma	trix product:	$\begin{bmatrix} 1 & 0 \\ -1 & 1 \\ -1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 3 \\ 1 & 3 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 3 & 9 \\ 3 & 10.89 \\ 5 & 12.96 \end{bmatrix}$:	
	$A. \begin{bmatrix} 1 & 3 & 9 \\ 0 & 3.3 & 1.89 \\ 0 & 3.6 & 3.96 \end{bmatrix}$	D. $\begin{bmatrix} 1 & 3 \\ 0 & 0.3 \\ 0 & 0.6 \end{bmatrix}$	$\begin{array}{c} B. \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \\ \begin{array}{c} 9 \\ 10.89 \\ 12.96 \end{bmatrix}$	$\begin{array}{ccc} 3 & 9 \\ 3.3 & 10.89 \\ 3.6 & 12.96 \end{array}$	E. $\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$\begin{array}{ccc} 3 & 9 \\ 0.3 & 1.89 \\ 0.6 & 3.96 \end{array}$	C. $\begin{bmatrix} 1 & 3 \\ 0 & 3.3 \\ 0 & 0 \end{bmatrix}$	9 1.89 3.96

6. Let matrix $P \in \mathbb{R}^{4 \times 5}$ be given as follows:

$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} & p_{15} \\ p_{21} & p_{22} & p_{23} & p_{24} & p_{25} \\ p_{31} & p_{32} & p_{33} & p_{34} & p_{35} \\ p_{41} & p_{42} & p_{43} & p_{44} & p_{45} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix}$	$\begin{array}{ccc} a_{14} & a_{15} \\ a_{24} & a_{25} \\ a_{34} & a_{35} \\ a_{44} & a_{45} \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$egin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	0 1 0 0 0
--	---	---	--	---	--	-----------------------

Using this definition, we see that a_{12} is equal to which of the following:

A. $a_{12} = p_{21}$ B. $a_{12} = p_{24}$ C. $a_{12} = p_{42}$ D. $a_{12} = p_{12}$ E. $a_{12} = p_{25}$

For the two problems below, consider the polygons V and W.:

7. Which of the following vertex matrices V encodes the begin polygon above? For this model, assume that the kth column of V encodes vertex Vk, for $k \in \{1, 2, 3, 4, 5, 6\}$:

A. $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 2 & 3 & 3 \\ 4 & 4 & 2 & 2 & 1 \end{bmatrix}$	B. $\begin{bmatrix} 1 & 2 & 2 & 3 & 3 & 1 \\ 4 & 4 & 2 & 2 & 1 & 1 \end{bmatrix}$	C. $\begin{bmatrix} 4 & 4 & 2 & 2 & 1 & 1 \\ 1 & 2 & 2 & 3 & 3 & 1 \end{bmatrix}$
	D. $\begin{bmatrix} 1 & 4 & 4 & 2 & 2 & 1 \\ 1 & 1 & 2 & 2 & 3 & 3 \end{bmatrix}$	E. $\begin{bmatrix} -4 & -4 & -2 & -2 & -1 \\ 1 & 2 & 2 & 3 & 3 \end{bmatrix}$	$\begin{bmatrix} -1\\1 \end{bmatrix}$

8. As noted above, let V be the vertex matrix that models the begin polygon and W be the vertex matrix that models the end polygon. Which matrix Q below satisfies equation

$$W = Q V$$

A.
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
B. $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ C. $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ D. $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ E. $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

9. Define matrix A by

$$A = \begin{bmatrix} 2 & 3 & 1 & 4 & 6 \\ 1 & -2 & 3 & 2 & 0 \\ -4 & 1 & 0 & 5 & 7 \\ 6 & -2 & 8 & 0 & -1 \\ -7 & -2 & -1 & 3 & 1 \end{bmatrix}$$

For which of the following matrices E below will the matrix product

EA = C

not have a zero in the first column?

A.
$$S_{21}(-0.5)$$
 B. $S_{31}(2)$ C. $S_{41}(-3)$ D. $S_{51}(3.5)$ E. $S_{41}(3)$

10. Let $A \in \mathbb{R}^{8 \times 4}$, $B \in \mathbb{R}^{4 \times 7}$, and $C \in \mathbb{R}^{7 \times 5}$. Let the matrix D be formed by the product

$$D = \left(A \cdot B \cdot C\right)^T$$

What are the dimensions of the matrix $[D(:, 4)]^T$?

A.
$$8 \times 5$$
 B. 5×8 C. 1×5 D. 1×8 E. 5×1

For the next two problems below, consider the wireframe model for a begin polygon V defined by vertex matrix and edge table below.

	Edge #	Start Vertex	End Vertex
$V - \begin{bmatrix} 2 & -2 & -2 & 2 \end{bmatrix}$	1	1	2
	2	2	3
	3	3	4
	4	4	1

Let W be a wireframe model for an end polygon given by

$$W = \begin{bmatrix} 0 & -4 & 0 & 4 \\ 2 & 2 & -2 & -2 \end{bmatrix}$$

Assume W formed by multiplying V by some matrix $E \in \mathbb{R}^{2 \times 2}$ with $W = E \cdot V$. Also, assume that the edge tables of V and W are identical. Under these assumptions, the wireframe model for both V and W are given below.

11. Choose the matrix ${\cal E}$ used to produce W in this situation:

A.
$$S_{21}(-2)$$
 B. $S_{12}(-2)$ C. $S_{21}(-1)$ D. $S_{12}(1)$ E. $S_{12}(-1)$

12. Find the length of edge 4 from the wireframe model for the end polygon $W = E \cdot V$ in the problem above.

A. 2 B. $\sqrt{20}$ C. 4 D. $4\sqrt{2}$ E. 0

13. Let matrix $B \in \mathbb{R}^{4 \times 4}$ be given as follows:

b_{11}	b_{12}	b_{13}	b_{14}		[1	0	0	0	a_{11}	a_{12}	a_{13}	a_{14}	[1	0	0	0
b_{21}	b_{22}	b_{23}	b_{24}	_	0	1	0	0	a_{21}	a_{22}	a_{23}	a_{24}	0	1	0	0
b_{31}	b_{32}	b_{33}	b_{34}	_	0	0	1	0	a_{31}	a_{32}	a_{33}	a_{34}	0	0	1	0
b_{41}	b_{42}	b_{43}	b_{44}		$\lfloor -2 \rfloor$	0	0	1	a_{41}	a_{42}	a_{43}	a_{44}	0	0	0	3

In symbols, we can write

$$B = S_{41}(-2) \cdot A \cdot D_4(3)$$

Using this definition, we see that b_{44} is equal to which of the following:

A. $-6a_{44}$ B. $-2a_{14} + 3a_{44}$	C. $-6a_{14} + 3a_{44}$	D. $3a_{14} - 6a_{44}$	E. $3a_{14} - 2a_{44}$
---------------------------------------	-------------------------	------------------------	------------------------

14. Let $n \in \mathbb{N}$ with $n \geq 3$. Suppose that we define the matrix

$$B = I_n + c_1 \mathbf{e}_2 \mathbf{e}_1^T - c_2 \mathbf{e}_3 \mathbf{e}_1^T$$

where $\mathbf{e}_k = I_n(:,k)$. Which of the following is equivalent to B^{-1} ?

A.
$$S_{21}(c_1) \cdot S_{31}(-c_2)$$
 B. $S_{31}(c_2) - S_{21}(c_1)$ C. $S_{31}(c_2) \cdot S_{21}(-c_1)$

D.
$$S_{21}\left(\frac{1}{c_1}\right) \cdot S_{31}\left(\frac{-1}{c_2}\right)$$
 E. $S_{12}(c_1) \cdot S_{13}(-c_2)$

Free Response

- 1. Write the definition for the column-partition version of matrix-matrix multiplication.
- 2. Let $A \in \mathbb{R}^{4 \times 4}$. Multiply A on the right by a matrix X to achieve each of the operations below. In each case, specifically state the entry-by-entry definition of the matrix X used to accomplish these operations.
 - A. Double column 1
 - B. Interchange columns 1 and 4
 - C. Add 2 times column 2 to column 3
 - D. Delete column 4 (so that the column dimension is reduced by 1)
- 3. Write the definition for the row-partition version of matrix-matrix multiplication.
- 4. Let $X \in \mathbb{R}^{4 \times 4}$. Multiply X on the left by a matrix A to achieve each of the operations below. In each case, specifically state the entry-by-entry definition of the matrix A used to accomplish these operations.
 - A. Halve row 3
 - B. Add row 2 to row 4
 - C. Swap rows 1 and 2
 - D. Subtract row 1 from each of the other rows