Name : \qquad
\qquad

Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1. T F Any two matrices that are conformable for matrix multiplication must have the same number of rows.
2. T F Let $A \in \mathbb{R}^{9 \times 6}$ and $X \in \mathbb{R}^{6 \times 7}$. Set

$$
B=A \cdot X
$$

Then $B(:, 3)=A(3,:) \cdot X$
3. T F Every square matrix is a product of elementary matrices.
4. $\mathrm{T} \quad \mathrm{F} A \in \mathbb{R}^{n \times n}$ is a diagonal matrix with nonzero diagonal entries, and $B \in \mathbb{R}^{m \times n}$, then multiplying B on the right by A scales the rows of B.
5. T F If A and B are $m \times n$ matrices, then the matrix products $A B^{T}$ and $A^{T} B$ are defined.
6. T F For rectangular matrices A, B, C, with proper dimensions, if $A B=C$ and C has 2 columns, then A has two columns.
7. T F If $A, B \in \mathbb{R}^{n \times n}$, then $(A-B)(A+B)=A^{2}-B^{2}$.
8. T F For matrices B, C, D with proper dimensions, if $B C=B D$, then $C=D$.
9. T F For any $A, B \in \mathbb{R}^{n \times n}, A B=B A$.

Multiple Choice For the problems below, circle the correct response for each question.

1. Define the matrix $B \in \mathbb{R}^{4 \times 4}$ by the following product:

$$
\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Let $\mathbf{e}_{2}=\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]^{T}$ and $\mathbf{e}_{3}=\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]^{T}$. Using this definition, we see that $b_{23}=\mathbf{e}_{2}^{T} B \mathbf{e}_{3}$ is given by which of the following:
A. $b_{23}=a_{43}$
B. $b_{23}=a_{24}$
C. $b_{23}=a_{23}$
D. $b_{23}=a_{44}$
E. None of these.
2. Let $A \in \mathbb{R}^{3 \times 3}$ be defined as

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right],
$$

where A is nonsingular and $a_{11} \neq 0$. Suppose that we choose $E \in \mathbb{R}^{3 \times 3}$ such that the product $E A$ has the following structure:

$$
E A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & * & * \\
0 & * & *
\end{array}\right] .
$$

In this case, the symbol $*$ represents a real numbers. Then, E must be given by which of the following:
A. $E=S_{13}\left(-\frac{a_{13}}{a_{11}}\right) \cdot S_{13}\left(-\frac{a_{12}}{a_{11}}\right)$
B. $E=S_{31}\left(\frac{a_{31}}{a_{11}}\right) \cdot S_{21}\left(\frac{a_{12}}{a_{11}}\right)$
C. $E=S_{31}\left(-\frac{a_{31}}{a_{11}}\right) \cdot S_{21}\left(-\frac{a_{12}}{a_{11}}\right)$
D. $E=S_{31}\left(-\frac{a_{11}}{a_{31}}\right) \cdot S_{21}\left(-\frac{a_{11}}{a_{21}}\right)$
E. None of these
3. Define the matrix $B \in \mathbb{R}^{4 \times 4}$ by the following product:

$$
\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Using this definition, we see that b_{42} is given by which of the following:
A. $b_{42}=a_{32}$
B. $b_{42}=a_{42}$
C. $b_{42}=a_{24}$
D. $b_{42}=a_{34}$
E. $b_{42}=a_{43}$
4. Let $A \in \mathbb{R}^{12 \times 7}$ and $B \in \mathbb{R}^{12 \times 6}$. Suppose $C=B^{T} A$. What are the dimensions of $C(:, 2)$?
A. 7×1
B. 6×1
C. 6×7
D. 7×6
E. 1×6
5. Which of the following represents the matrix-matrix product: $\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 3 & 9 \\ 1 & 3.3 & 10.89 \\ 1 & 3.6 & 12.96\end{array}\right]$:
A. $\left[\begin{array}{rrr}1 & 3 & 9 \\ 0 & 3.3 & 1.89 \\ 0 & 3.6 & 3.96\end{array}\right]$
B. $\left[\begin{array}{rrr}1 & 3 & 9 \\ 0 & 3.3 & 10.89 \\ 0 & 3.6 & 12.96\end{array}\right]$
C. $\left[\begin{array}{rrr}1 & 3 & 9 \\ 0 & 3.3 & 1.89 \\ 0 & 0 & 3.96\end{array}\right]$
D. $\left[\begin{array}{rrr}1 & 3 & 9 \\ 0 & 0.3 & 10.89 \\ 0 & 0.6 & 12.96\end{array}\right]$
E. $\left[\begin{array}{rrr}1 & 3 & 9 \\ 0 & 0.3 & 1.89 \\ 0 & 0.6 & 3.96\end{array}\right]$
6. Let matrix $P \in \mathbb{R}^{4 \times 5}$ be given as follows:

$$
\left[\begin{array}{lllll}
p_{11} & p_{12} & p_{13} & p_{14} & p_{15} \\
p_{21} & p_{22} & p_{23} & p_{24} & p_{25} \\
p_{31} & p_{32} & p_{33} & p_{34} & p_{35} \\
p_{41} & p_{42} & p_{43} & p_{44} & p_{45}
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45}
\end{array}\right]\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Using this definition, we see that a_{12} is equal to which of the following:
A. $a_{12}=p_{21}$
B. $a_{12}=p_{24}$
C. $a_{12}=p_{42}$
D. $a_{12}=p_{12}$
E. $a_{12}=p_{25}$

For the two problems below, consider the polygons V and W.:

BEGIN POLYGON V

END POLYGON W

7. Which of the following vertex matrices V encodes the begin polygon above? For this model, assume that the k th column of V encodes vertex Vk , for $k \in\{1,2,3,4,5,6\}$:
A. $\left[\begin{array}{llllll}1 & 1 & 2 & 2 & 3 & 3 \\ 1 & 4 & 4 & 2 & 2 & 1\end{array}\right]$
B. $\left[\begin{array}{llllll}1 & 2 & 2 & 3 & 3 & 1 \\ 4 & 4 & 2 & 2 & 1 & 1\end{array}\right]$
C. $\left[\begin{array}{llllll}4 & 4 & 2 & 2 & 1 & 1 \\ 1 & 2 & 2 & 3 & 3 & 1\end{array}\right]$
D. $\left[\begin{array}{llllll}1 & 4 & 4 & 2 & 2 & 1 \\ 1 & 1 & 2 & 2 & 3 & 3\end{array}\right]$
E. $\left[\begin{array}{rrrrrr}-4 & -4 & -2 & -2 & -1 & -1 \\ 1 & 2 & 2 & 3 & 3 & 1\end{array}\right]$
8. As noted above, let V be the vertex matrix that models the begin polygon and W be the vertex matrix that models the end polygon. Which matrix Q below satisfies equation

$$
W=Q V
$$

A. $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
B. $\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]$
C. $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$
D. $\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]$
E. $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$
9. Define matrix A by

$$
A=\left[\begin{array}{rrrrr}
2 & 3 & 1 & 4 & 6 \\
1 & -2 & 3 & 2 & 0 \\
-4 & 1 & 0 & 5 & 7 \\
6 & -2 & 8 & 0 & -1 \\
-7 & -2 & -1 & 3 & 1
\end{array}\right]
$$

For which of the following matrices E below will the matrix product

$$
E A=C
$$

not have a zero in the first column?
A. $S_{21}(-0.5)$
B. $S_{31}(2)$
C. $S_{41}(-3)$
D. $S_{51}(3.5)$
E. $S_{41}(3)$
10. Let $A \in \mathbb{R}^{8 \times 4}, B \in \mathbb{R}^{4 \times 7}$, and $C \in \mathbb{R}^{7 \times 5}$. Let the matrix D be formed by the product

$$
D=(A \cdot B \cdot C)^{T}
$$

What are the dimensions of the matrix $[D(:, 4)]^{T}$?
A. 8×5
B. 5×8
C. 1×5
D. 1×8
E. 5×1

For the next two problems below, consider the wireframe model for a begin polygon V defined by vertex matrix and edge table below.

$$
V=\left[\begin{array}{rrrr}
2 & -2 & -2 & 2 \\
2 & 2 & -2 & -2
\end{array}\right]
$$

Edge \#	Start Vertex	End Vertex
1	1	2
2	2	3
3	3	4
4	4	1

Let W be a wireframe model for an end polygon given by

$$
W=\left[\begin{array}{rrrr}
0 & -4 & 0 & 4 \\
2 & 2 & -2 & -2
\end{array}\right]
$$

Assume W formed by multiplying V by some matrix $E \in \mathbb{R}^{2 \times 2}$ with $W=E \cdot V$. Also, assume that the edge tables of V and W are identical. Under these assumptions, the wireframe model for both V and W are given below.

11. Choose the matrix E used to produce W in this situation:
A. $S_{21}(-2)$
B. $S_{12}(-2)$
C. $S_{21}(-1)$
D. $S_{12}(1)$
E. $S_{12}(-1)$
12. Find the length of edge 4 from the wireframe model for the end polygon $W=E \cdot V$ in the problem above.
A. 2
B. $\sqrt{20}$
C. 4
D. $4 \sqrt{2}$
E. 0
13. Let matrix $B \in \mathbb{R}^{4 \times 4}$ be given as follows:

$$
\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-2 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

In symbols, we can write

$$
B=S_{41}(-2) \cdot A \cdot D_{4}(3)
$$

Using this definition, we see that b_{44} is equal to which of the following:
A. $-6 a_{44}$
B. $-2 a_{14}+3 a_{44}$
C. $-6 a_{14}+3 a_{44}$
D. $3 a_{14}-6 a_{44}$
E. $3 a_{14}-2 a_{44}$
14. Let $n \in \mathbb{N}$ with $n \geq 3$. Suppose that we define the matrix

$$
B=I_{n}+c_{1} \mathbf{e}_{2} \mathbf{e}_{1}^{T}-c_{2} \mathbf{e}_{3} \mathbf{e}_{1}^{T}
$$

where $\mathbf{e}_{k}=I_{n}(:, k)$. Which of the following is equivalent to B^{-1} ?
A. $S_{21}\left(c_{1}\right) \cdot S_{31}\left(-c_{2}\right)$
B. $S_{31}\left(c_{2}\right)-S_{21}\left(c_{1}\right)$
C. $S_{31}\left(c_{2}\right) \cdot S_{21}\left(-c_{1}\right)$
D. $S_{21}\left(\frac{1}{c_{1}}\right) \cdot S_{31}\left(\frac{-1}{c_{2}}\right)$
E. $S_{12}\left(c_{1}\right) \cdot S_{13}\left(-c_{2}\right)$

Free Response

1. Write the definition for the column-partition version of matrix-matrix multiplication.
2. Let $A \in \mathbb{R}^{4 \times 4}$. Multiply A on the right by a matrix X to achieve each of the operations below. In each case, specifically state the entry-by-entry definition of the matrix X used to accomplish these operations.
A. Double column 1
B. Interchange columns 1 and 4
C. Add 2 times column 2 to column 3
D. Delete column 4 (so that the column dimension is reduced by 1)
3. Write the definition for the row-partition version of matrix-matrix multiplication.
4. Let $X \in \mathbb{R}^{4 \times 4}$. Multiply X on the left by a matrix A to achieve each of the operations below. In each case, specifically state the entry-by-entry definition of the matrix A used to accomplish these operations.
A. Halve row 3
B. Add row 2 to row 4
C. Swap rows 1 and 2
D. Subtract row 1 from each of the other rows
