Math 2B: Applied Linear Algebra

True/False For the problems below, circle T if the answer is true and circle F is the answer is false.

1.	T	F	Let $A \in \mathbb{R}^{m \times n}$. If $f(\mathbf{x}) = A\mathbf{x}$, then $\operatorname{Rng}(f) = \{ \mathbf{b} \in \mathbb{R}^m : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}.$
2.	T	F	When multiplying matrix A and vector \mathbf{x} , it is important to check that the inner dimensions agree.
3.	T	F	If $f(\mathbf{x}) = A\mathbf{x}$ and $\mathbf{b} \in \operatorname{Rng}(f)$, then b is linearly dependent on the columns of A.
4.	T	F	If $f(\mathbf{b}) = A^T \mathbf{b}$, then the range of f is the span of the rows of f . In other words, $\operatorname{Rng}(f) = \operatorname{span} \{ [A(i,:)]^T : i \in \{1, 2,, m\} \}$
5.	T	F	When multiplying A^T and b , it is important to check that the inner dimensions agree.
6.	T	F	If $A \in \mathbb{R}^{6 \times 5}$, then the function $f(\mathbf{x}) = A\mathbf{x}$ cannot be onto.
7.	T	F	Matrix-vector multiplication allows us to compute a linear combination of vectors efficiently.
8.	T	F	Let $A \in \mathbb{R}^{m \times n}$ and suppose $\mathbf{x} \in \mathbb{R}^n$. $A\mathbf{x} = \sum_{k=1}^n x_k A(:,k)$
9.	Т	F	Let $A \in \mathbb{R}^{m \times n}$ and suppose $\mathbf{x} \in \mathbb{R}^n$. If $f(\mathbf{x}) = A\mathbf{x}$, then the codomain of this relation is \mathbb{R}^n
10.	T	F	Let $A \in \mathbb{R}^{m \times n}$ and suppose $\mathbf{x} \in \mathbb{R}^n$. If $f(\mathbf{x}) = A\mathbf{x}$, then the range of f is the span of the columns of f . In other words, $\operatorname{Rng}(f) = \operatorname{span} \{A(:,k) : k \in \{1, 2,, n\}\} \subseteq \mathbb{R}^m$
11.	T	F	If $f(\mathbf{b}) = \mathbf{b}^T A$, then the $\operatorname{Rng}(f) = \{\mathbf{x} \in \mathbb{R}^{1 \times n} : \mathbf{x} = \mathbf{b}^T A \text{ for some } \mathbf{b} \in \mathbb{R}^m\}$

12.	T	F	Let $A \in \mathbb{R}^{m \times n}$. If $f(\mathbf{x}) = A\mathbf{x}$, then the domain space of this relation is \mathbb{R}^n
13.	Т	F	Let $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$. Then $A^T \mathbf{y} = \sum_{i=1}^n y_i [A(i,:)]^T$
14.	T	F	For any $A \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^n$, $A\mathbf{x} = \sum_{k=1}^n x_k A(:,k)$.
15.	T	F	Let $A \in \mathbb{R}^{m \times n}$. Define the linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$ by $T(\mathbf{x}) = A^T \mathbf{x}$. If $\operatorname{Rng}(T) = \mathbb{R}^n$, then $m \ge n$.
16.	T	F	When multiplying A and x , it is important to check that the inner dimensions must agree.
17.	T	F	If $f(\mathbf{b}) = A^T \mathbf{b}$, then the range of f is the span of the rows of f . In other words, $\operatorname{Rng}(f) = \operatorname{span} \{ [A(i,:)]^T : i \in \{1, 2,, m\} \}$
18.	T	F	If $f(\mathbf{x}) = A\mathbf{x}$ and $\mathbf{b} \in \operatorname{Rng}(f)$, then b is linearly dependent on the columns of A .
19.	Т	F	If $f(\mathbf{x}) = A\mathbf{x}$, then the codomain of this relation is \mathbb{R}^n
20.	T	F	If $f(\mathbf{x}) = A\mathbf{x}$, then the range of f is the span of the columns of f . In other words, $\operatorname{Rng}(f) = \operatorname{span} \{A(:,k) : k \in \{1, 2,, n\}\} \subseteq \mathbb{R}^m$
21.	T	F	$A\mathbf{x} = \sum_{k=1}^{n} x_k A(:,k)$
22.	T	F	Matrix-vector multiplication allows us to compute a linear combination of vectors efficiently.
23.	Т	F	Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^n$. Then the matrix-vector product $A \cdot \mathbf{x}$ represents a linear combination of the rows of A with scalar multiples defined by the entries of \mathbf{x} .

Multiple Choice For the problems below, circle the correct response for each question.

- 1. Let $A \in \mathbb{R}^{m \times n}$ be given and suppose $\mathbf{x} \in \mathbb{R}^n$. If $f(\mathbf{x}) = A\mathbf{x}$, which of the following statements is false:
 - A. $\mathbf{0} \in \operatorname{Rng}(f)$.
 - B. The codomain of $f(\mathbf{x})$ is \mathbb{R}^m .
 - C. The domain of f(x) is \mathbb{R}^n .
 - **D.** $\operatorname{Rng}(f) = \{ \text{set of all solutions to the linear-systems problem.} \}.$
 - E. $\mathbf{b} \in \operatorname{Rng}(f)$ if and only if \mathbf{b} is a linear combinations of the columns of A.
- 2. Suppose that $A \in \mathbb{R}^{20 \times 5}$ and $\mathbf{x} \in \mathbb{R}^5$. How many total operations on real numbers are necessary to solve the matrix-vector multiplication problem $A\mathbf{x} = \mathbf{b}$? Remember that each multiplication between two real numbers counts as one operation and each addition between two real numbers counts as one operation.

A. 100 B. 180	C. 90	D. 25	E. 200
---------------	-------	-------	--------

3. Let $\mathbf{x} \in \mathbb{R}^2$ be a nonzero vector. Suppose

$$Q = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

and let $\mathbf{y} = Q\mathbf{x}$. For what angle θ is $\mathbf{x}^T \mathbf{y} = 0$

A. 0 B.
$$\frac{\pi}{6}$$
 C. $\frac{5\pi}{4}$ D. $\frac{4\pi}{3}$ E. $\frac{6\pi}{4}$

4. Define three vectors in \mathbb{R}^4 as

$$\mathbf{a}_{1} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \qquad \mathbf{a}_{2} = \begin{bmatrix} 0\\5\\10\\15 \end{bmatrix}, \qquad \mathbf{a}_{3} = \begin{bmatrix} 0\\25\\100\\225 \end{bmatrix}, \qquad \mathbf{a}_{4} = \begin{bmatrix} 5\\-45\\-45\\5 \end{bmatrix}$$

Please confirm that $\mathbf{a}_4 = 5 \cdot \mathbf{a}_1 - 15 \cdot \mathbf{a}_2 + 1 \cdot \mathbf{a}_3$. Then, choose the vector $\mathbf{x} \in \mathbb{R}^4$ such that

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} \cdot \mathbf{x} = \mathbf{0}$$

A.
$$\begin{bmatrix} 45\\-1\\1\\-1 \end{bmatrix}$$
 B. $\begin{bmatrix} 5\\-15\\1\\1\\1 \end{bmatrix}$ C. $\begin{bmatrix} -5\\15\\-1\\-1\\-1 \end{bmatrix}$ D. $\begin{bmatrix} 5\\-15\\1\\-1\\-1 \end{bmatrix}$ E. The product will never be zero

For the following two problems, consider the following spring-mass system

5. Consider the mass-spring chain from the diagram above. Recall the model for the mass spring chain is given by $M\ddot{\mathbf{u}}(t) + K\mathbf{u}(t) = \mathbf{F}_e(t)$. Identify the stiffness matrix K for the given values of k_i ?

A.
$$\begin{bmatrix} 500 & -200 & 0 \\ -200 & 400 & -200 \\ 0 & -200 & 500 \end{bmatrix}$$
B.
 $\begin{bmatrix} 300 & -200 & 0 \\ -200 & 200 & -200 \\ 0 & -200 & 300 \end{bmatrix}$
C.
 $\begin{bmatrix} 500 & -200 & -200 \\ -200 & 400 & -200 \\ -200 & -200 & 500 \end{bmatrix}$

D.
 $\begin{bmatrix} -500 & 200 & 0 \\ 200 & -400 & 200 \\ 0 & 200 & -500 \end{bmatrix}$
E.
 $\begin{bmatrix} 300 & 0 & 0 \\ 0 & 200 & 0 \\ 0 & 0 & 300 \end{bmatrix}$

6. Suppose that you are given the displacement vector when t = T at equilibrium to find

$$\mathbf{u} = \begin{bmatrix} u_1(T) \\ u_2(T) \\ u_3(T) \end{bmatrix} = \begin{bmatrix} 0.98 \\ 1.96 \\ 0.98 \end{bmatrix}$$

measured in meters. Then, which of the following gives the mass vector $\mathbf{m} = \begin{bmatrix} m_1 & m_2 & m_3 \end{bmatrix}^T$ as measured in kg? Assume the acceleration due to earth's gravity is $g = 9.8m/s^2$. Also assume that the mass of each spring is zero and that these springs satisfy Hooke's law exactly.

A.
$$\begin{bmatrix} 10\\40\\10 \end{bmatrix}$$
 B. $\begin{bmatrix} 9.8\\39.2\\9.8 \end{bmatrix}$ C. $\begin{bmatrix} 1\\4\\1 \end{bmatrix}$ D. $\begin{bmatrix} 0.1\\0.4\\0.1 \end{bmatrix}$ E. $\begin{bmatrix} 29.4\\39.2\\29.4 \end{bmatrix}$

For the next two problems below, consider the following 4-mass, 5-spring chain presented below.

7. Recall that the initial position vector \mathbf{x}_0 and the final position vector $\mathbf{x}(T)$ store the positions, measured in meters, of each mass at equilibrium when t = 0 and when t = T respectively. Suppose we measure

$\mathbf{x}_0 =$	$\begin{bmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \end{bmatrix}$	=	$\begin{bmatrix} 0.200 \\ 0.400 \\ 0.600 \end{bmatrix}$	$\begin{bmatrix} x_1(T) \\ x_2(T) \\ x_3(T) \end{bmatrix}$	=	$\begin{bmatrix} 0.249 \\ 0.498 \\ 0.698 \end{bmatrix}$	
	$\begin{bmatrix} x_3(0) \\ x_4(0) \end{bmatrix}$		0.800	$\begin{bmatrix} x_3(T) \\ x_4(T) \end{bmatrix}$		0.849	

where each entry is given in meters. Using this information, which of the following vectors gives the force vector \mathbf{f}_s that encodes the forces stored in each spring in this system?

А.	$\begin{bmatrix} 1.960\\ 0.490\\ 0.000\\ -0.490\\ -1.960 \end{bmatrix}$	$B. \begin{bmatrix} 1.960\\ 0.980\\ 0.980\\ 1.960 \end{bmatrix}$	$\begin{array}{c} 1.470\\ 0.490\\ 0.000\\ 0.490\\ 1.470 \end{array}$	D. $\begin{bmatrix} 1.470\\ 0.490\\ 0.490\\ 1.470 \end{bmatrix}$	E. $\begin{bmatrix} 0.04 \\ 0.04 \\ 0.00 \\ -0.04 \\ -0.04 \end{bmatrix}$	9 0 9
----	---	--	--	--	---	-------------

8. Under the same assumptions as the problem above, which of the following gives the mass vector

$$\mathbf{m} = \begin{bmatrix} m_1 & m_2 & m_3 & m_4 \end{bmatrix}^T$$

measured in kg, used to produce this position data?

A.
$$\begin{bmatrix} 0.200\\ 0.100\\ 0.100\\ 0.200 \end{bmatrix}$$
B. $\begin{bmatrix} 1.470\\ 0.490\\ 0.490\\ 1.470 \end{bmatrix}$ C. $\begin{bmatrix} 0.250\\ 0.200\\ 0.200\\ 0.250 \end{bmatrix}$ D. $\begin{bmatrix} 2.450\\ 1.960\\ 1.960\\ 2.450 \end{bmatrix}$ E. $\begin{bmatrix} 0.150\\ 0.050\\ 0.050\\ 0.150 \end{bmatrix}$