LESSON 9: Rational Expressions and Functions

- □ Polynomial expressions
- □ Rational expressions
- □ Rational functions
- □ Simplified rational expressions
- □ Caution on canceling

ALGEBRAIC PROPERTIES OF FRACTIONS

Rational Number: a number that can be expressed as the quotient of two integers

$$\frac{550}{5} \leftarrow$$
Fraction Notation for 1: $\frac{A}{A} =$

B D

Division of Fractions:

$$\frac{A}{B} \div \frac{C}{D} =$$

 $\frac{A}{D} + \frac{B}{D} =$

Addition of Fractions:
$$\frac{A}{D} - \frac{B}{D} =$$

LESSON 9: EQUIVALENT FRACTIONS

Start with the number on the left and use a series of operations to create the <u>equivalent</u> expression on the right. Remember, you can change the way a number looks without changing the VALUE by multiplying or dividing by 1 (in any form you want).

	Start with:	End with:
7.	5 =	$=\frac{30y}{6y}$
8.	2 =	$=\frac{4x^2}{2x^2}$
9.	1 =	$=\frac{x+5}{5+x}$
10.	-1 =	$=\frac{3-x}{x-3}$

LESSON 9: EQUIVALENT FUNCTIONS

Fill in the tables below. You can use your graphing calculator or you can do the computations by hand.

1.	f(x) = -2x		
		x	f(x)
		-1	
		1	
		3	
		5	
		7	
2.	$g(x) = \frac{6x - 2x^2}{x - 3}$	x	<i>g</i> (<i>x</i>)
		-1	
		1	
		3	
		5	
		7	
		5	

3. Compare the output values of f(x) to g(x). What do you notice?

4. Use the algebraic properties of fractions to validate your observations from problem 3 above.

- LESSON 9: Multiplication and Division

 The product of two rational expressions
 - □ The quotient of two rational expressions

Using the rules of fractions that we've studied together, multiply or divide the following rational expressions.

 $\frac{16}{25} \cdot \frac{35}{12}$ 5.

 $\frac{x-1}{x+2} \cdot \frac{x^2+2x}{3-3x}$ 6.

Name:

7	10 <i>t</i> +20	$t^{2}-1$
1.	$2t^2 - 3t + 1$	5t+10

8. $\frac{x^2 - 2x - 3}{x^2 - 4} \div \frac{3 - x}{x + 2}$

OPTIONAL CHALLENGE PROBLEMS

9. $\frac{(a^2+3a+2)}{a^2-4} \div \frac{5a^2+10a}{a-2}$

10	10 <i>b</i> +20	b^2
10.	b	b+2