LESSON 18: The DiscriminantQuadratic formula for the solution of a quadratic equation in standard form

$$
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { OR } \quad x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$The discriminant: $b^{2}-4 a c=0$Three scenarios for x -intercepts of parabola

- No x-intercepts: no real solution to equation $a x^{2}+b x+c=0$
- One x -intercept: One solution to equation $a x^{2}+b x+c=0$
- Two x-intercepts: Two solution to equation $a x^{2}+b x+c=0$
- Rational Solutions
- Irrational Solutions

Classification of solutions of quadratic equation using discriminant

UPWARD FACING PARABOLA

Upward facing parabola with NO x-intercept

Upward facing parabola with ONE x-intercept

Upward facing parabola with TWO x -intercept

DOWNWARD FACING PARABOLA

Downward facing parabola with NO x-intercept

Downward facing parabola with ONE x -intercept

Downward facing parabola with TWO x-intercept
\qquad
1A. Solve the quadratic equation below using the quadratic formula. Be sure to specifically identify the discriminant of the quadratic formula.

$$
x^{2}=4 x-4
$$

Consider the graph of the quadratic function $y_{1}=x^{2}-4 x+4$ given below.

1B. How many x-intercepts does the quadratic function $y_{1}=x^{2}-4 x+4$ have?

1C. Look at the discriminant from part 1A and the quadratic formula, why does your answer to 1B make sense?
\qquad
2A. Solve the quadratic equation below using the quadratic formula. Be sure to specifically identify the discriminant of the quadratic formula.

$$
2 p^{2}=12-5 p
$$

Consider the graph of the quadratic function $y_{1}=2 x^{2}+5 x-12$ given below.

2B. How many x-intercepts does the quadratic function $y_{1}=2 x^{2}+5 x-12$ have?

2C. Look at the discriminant from part 2A and the quadratic formula. Why does your answer to 2 B make sense?
\qquad
3. Solve the quadratic equation below using the quadratic formula. Be sure to specifically identify the discriminant of the quadratic formula.

$$
-t^{2}=2 t+3
$$

Consider the graph of the quadratic function $y_{1}=-x^{2}-2 x-3$ given below.

3B. How many x-intercepts does the quadratic function $y_{1}=-x^{2}-2 x-3$ have?

3C. Look at the discriminant from part 2A and the quadratic formula. Why does your answer to 2 B make sense?

