LESSON 13: Rational Numbers as Exponents Definition and properties of integer exponents Rational exponents: $a^{1/n} = \sqrt[n]{a}$ Positive rational exponents Negative rational exponents Laws of exponents for real number exponents To simplify radical expressions 1. List the Laws of Exponents						
Exponent notation:	b^n	Negative exponent:	b^{-n}			
One as an exponent:	b^1	Product Rule:	$b^n \cdot b^m$			
Zero as an exponent:	b^0	Quotient Rule:	$\frac{b^n}{b^m}$			

Factors and Negative Exponents: $(a \cdot b)^{-n}$

Raising a product to a power: $(a \cdot b)^n$

Reciprocals and Negative Exponents: $\frac{b^{-n}}{b^{-m}}$

Raising a quotient to a power: $\left(\frac{a}{b}\right)^n$

Use the rules of exponents to solve each of the following problems

4.
$$x^{\frac{1}{2}} \cdot x^{\frac{1}{2}}$$
 5. $(x^{\frac{1}{5}})^{5}$

Use what you know about radicals to solve each of the following problems

6.		x		x
	•			

7. $\left(\sqrt[5]{x}\right)^5$

Identify the connection between radicals and exponential notation?

$$b = \sqrt[n]{a} \qquad \qquad b = a^{\frac{1}{n}}$$

Rewrite using radical notation:

8.
$$x^{\frac{1}{5}}$$
 9. $w^{\frac{2}{3}}$

Rewrite using exponent notation:

10. $\sqrt[5]{y}$

11. $\sqrt[7]{x^3}$

Use your calculator to evaluate following mathematical expressions (with 6 digits after the decimal):

12.	$\sqrt{8} \approx$	13. $\frac{2\sqrt{18}}{3} \approx$	14. ⁴ √64 ≈
-----	--------------------	------------------------------------	------------------------

Revisit the radicals above. Simplify use the strategies we discussed last time.

15. $\sqrt{8}$

16. $\frac{2\sqrt{18}}{3}$

17. ∜√64

Use rational exponents to simplify each of the following radical expressions .

24. $\sqrt[5]{\sqrt[2]{x}}$

25. $\sqrt[6]{(12x)^3}$