\qquad

LESSON 13: Rational Numbers as Exponents
\square Definition and properties of integer exponents
\square Rational exponents: $a^{1 / n}=\sqrt[n]{a}$
\square Positive rational exponents
\square Negative rational exponents
\square Laws of exponents for real number exponents
\square To simplify radical expressions

1. List the Laws of Exponents

Exponent notation: b^{n}
Negative exponent: $\quad b^{-n}$

One as an exponent: $\quad b^{1}$
Product Rule: $\quad b^{n} \cdot b^{m}$

Zero as an exponent: b^{0}
Quotient Rule: $\quad \frac{b^{n}}{b^{m}}$

The Power Rule: $\quad\left(b^{n}\right)^{m}$
Factors and Negative Exponents: $(a \cdot b)^{-n}$

Raising a product to a power: $(a \cdot b)^{n}$ Reciprocals and Negative Exponents: $\frac{b^{-n}}{b^{-m}}$

Raising a quotient to a power: $\left(\frac{a}{b}\right)^{n}$

Use the rules of exponents to solve each of the following problems
4. $x^{\frac{1}{2}} \cdot x^{\frac{1}{2}}$
5. $\left(x^{\frac{1}{5}}\right)^{5}$

Use what you know about radicals to solve each of the following problems

$$
\text { 6. } \sqrt{x} \cdot \sqrt{x}
$$

7. $(\sqrt[5]{x})^{5}$

Identify the connection between radicals and exponential notation?

$b=a^{\frac{1}{n}}$

Rewrite using radical notation:
8. $x^{\frac{1}{5}}$
9. $w^{\frac{2}{3}}$

Rewrite using exponent notation:
10. $\sqrt[5]{y}$
11. $\sqrt[7]{x^{3}}$

Use your calculator to evaluate following mathematical expressions (with 6 digits after the decimal):
12. $\sqrt{8} \approx$
13. $\frac{2 \sqrt{18}}{3} \approx$
14. $\sqrt[4]{64} \approx$

Revisit the radicals above. Simplify use the strategies we discussed last time.
15. $\sqrt{8}$
16. $\frac{2 \sqrt{18}}{3}$
17. $\sqrt[4]{64}$

Use rational exponents to simplify each of the following radical expressions .
24. $\sqrt[5]{\sqrt[2]{x}}$
25. $\sqrt[6]{(12 x)^{3}}$

