LESSON 12: Radical Expressions, Functions, and Models
$\square \sqrt{a}=\sqrt[2]{a}:$ Square root of a
\square Radical sign, index and radicand
\square Calculating roots using calculator
\square Simplifying $\sqrt{(a)^{2}}$ using the absolute value
$\square \sqrt[3]{a}$: Cube root of a
$\square \sqrt[n]{a}$: the nth root of a for odd index n
$\square \sqrt[n]{a}$: the nth root of a for even index n
Anatomy of a pure power

$$
b^{n}=a
$$

For each of the following power expressions, do each of the following:
i. Specifically identify the value of base b and the value of power n iii. Evaluate the expression

The first one is done for you.
1A. 11^{2}

1C. 3^{4}
1D. 5^{3}

Backward Problem: anatomy of radicals

$$
b=\sqrt[n]{a}
$$

For each of the following power expressions, do each of the following:
i. Specifically identify the value of index n and the value of radicand a iii. Evaluate the expression by transforming each expression into a power equation The first one is done for you.

2A. $\sqrt[2]{100}$

2C. $\sqrt[5]{32}$

3. Evaluate each entry of the tables below. Then, in the last row of the table, specifically identify the index of each radical expression.

TABLE 3A: Values of $\sqrt[2]{x^{2}}$		TABLE 3B: Values of $\sqrt[3]{x^{3}}$	
Input x	$\begin{gathered} \text { Output } \\ y=\sqrt[2]{x^{2}} \end{gathered}$	Input x	$\begin{gathered} \text { Output } \\ y=\sqrt[3]{x^{3}} \end{gathered}$
-3		-3	
-2		-2	
-1		-1	
0		0	
1		1	
2		2	
3		3	
What is the index of $y=\sqrt[2]{x^{2}}$:		What is the index of $y=\sqrt[3]{x^{3}}$:	

4. Look at the output values of $y=\sqrt[2]{x^{2}}$ in table 3A. What pattern do you notice about these output values versus the input values of x ? Why do the negative signs on the input values of x "disappear" in this table? What function behaves like this?
5. Look at the output values of $y=\sqrt[3]{x^{3}}$ in tables 3B. What pattern do you notice about these output values versus the input values of x ? Why DON'T the negative input values of x "disappear" in this table?
\qquad
6. Evaluate each entry of the tables below. Then, in the last row of the table, specifically identify the index of each radical expression.

	: Values of		Values of
Input x	Output $y=\sqrt[4]{x^{4}}$	Input	Output $y=\sqrt[5]{x^{5}}$
-2		-2	
-1		-1	
0		0	
1		1	
2		2	
What is the index of $y=\sqrt[4]{x^{4}}$:		What is the index of $y=\sqrt[5]{x^{5}}$:	

7. Look at the output values of $y=\sqrt[4]{x^{4}}$ in table 3C. What pattern do you notice about these output values versus the input values of x ? Why do the negative signs on the input values of x "disappear" in this table? What function behaves like this?
8. Look at the output values of $y=\sqrt[5]{x^{5}}$ in tables 3D. What pattern do you notice about these output values versus the input values of x ? Why DON'T the negative input values of x "disappear" in this table?

INVERSE OPERATIONS FOR ODD POWERS

Suppose index $n=3,5,7,9, \ldots$ is an odd number

$$
\sqrt[n]{x^{n}}=x
$$

INVERSE OPERATIONS FOR EVEN POWERS

Suppose index $n=2,4,6,8, \ldots$ is an even number:

$$
\sqrt[n]{x^{n}}=|x|
$$

Simplify each expression below using the rules for radicals with an even and radicals with an odd index
6A. $\sqrt[2]{w^{2}}$
6B. $\sqrt[4]{16 \cdot b^{4}}$

6C. $\sqrt[5]{32 \cdot a^{10}}$
6B. $\sqrt[3]{-125 y^{3}}$

