
Lesson 5: Fixed-Point Numbers

Recall that our favorite number systems have a very special inclusion chain:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

Each of these are strict subset relations, denoted by the symbol ⊂. So far, we’ve
only studied how to use MATLAB’s native data classes to encode both natural
numbers and integers using m−bit binary words. We’ve focused on the case that
m = 8, 16, 32, and 64 since those word sizes come standard in MATLAB.

More specifically, Lesson 3 focused on how we can encode nonnegative integers
using MATLAB’s uint data classes while Lesson 4 was an introduction to encoding
signed integers via MATLAB’s int data classes. Both the encoding schemes used
to represent these numbers are examples of a larger class of data representations.
We will refer to this more general encoding scheme known as fixed-point number
systems in which we always have a constant number of binary digits to the left and
right of the radix (binary or decimal) point.

Fixed radix point in decimal and binary integers
Suppose that x ∈ Z is a nonnegative (unsigned) integer with x ≥ 0.Recall from

our work in Lesson 3 that when we write x using a decimal representation, we
produce a string of (n + 1)− decimal digits in the form

x = ( dndn−1...d2d1d0 )10

where n ≥ 0 and di ∈ {0, 1, 2, ..., 9} for all values i ∈ {0, 1, 2, ..., n}.

EXAMPLE 5.1
Let’s recall how we interpreted the number x = (215)10 using a decimal represen-
tation. This positive integer is written with n = 3 decimal digits. If we set

d0 = 5, d1 = 1, d2 = 2,

then we can rewrite our integer in the following form

x = d2d1d0,

= d2 · 102 + d1 · 101 + d0 · 100,

=
n∑

i=0
di · 10i.

This is a decimal representation, since each position di is scaled by the power 10i.
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Let’s also recall from Lesson 3 that for nonnegative x ∈ Z with x ≥ 0, we can
write x using a binary representation to produce a string of (m + 1)− binary digits
in the form

x = ( bmbm−1...b2b1b0 )2

where m ≥ 0 and bi ∈ {0, 1} for all values i ∈ {0, 1, 2, ..., m}.

EXAMPLE 5.2
Now, let’s revisit our study of binary representations of unsigned integers by con-
sidering the number x = (1101 0111)2. Let’s interpret this number using a binary
representation. We notice that this positive integer is written with m = 8 binary
digits. If we set

b0 = 1, b1 = 1, b2 = 1, b3 = 0, b4 = 1, b5 = 0, b6 = 1, b7 = 1,

then we can rewrite our integer in the following form

x = b7b6b5b4b3b2b1b0,

= b7 · 27 + b6 · 26 + b5 · 25 + b4 · 24 + b3 · 23 + b2 · 22 + b1 · 21 + b0 · 20,

=
m∑

i=0
bi · 2i.

This is a binary representation since each position bi is scaled by the power 2i.

In both Examples 5.1 and 5.2, we notice that the location of the radix point
was implied but not explicitly written. Specifically, when we write x = 215, we
actually mean that the radix point (also known as the decimal point for our decimal
representation) is supposed to be immediately to the right of the least significant
decimal digit. To be more accurate, we should write

x = 215.0

where the radix indicates the exact position of the decimal point. Note, we write
the radix and zero in gray to represent a digit that is implied but not actually
written. Similarly, we can include our radix point (i.e. binary point) to the right of
our least significant bit when we write

x = 1101 0111 = 11010111.0

In both cases, the radix point is in a fixed position. In fact, every time we use our
standard decimal or binary representations

x = dndn−1...d2d1d0 = bmbm−1...b2b1b0

we have implicitly fixed the radix immediately to the right of the least significant
digit. This is our first example of a fixed-point representation, since the location of
the radix is fixed. Let’s extend our view of fixed-point representations and study
how we can represent finite fractions using fixed-point number systems.
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Decimal fractions
While we have spent a lot of time analyzing decimal and binary encoding of

x ∈ Z, we have not yet considered how to using binary and decimal number
systems to represent x ∈ Q. In other words, we haven’t yet discussed how to
handle fractions in our number systems. To start this discussion, let’s focus on
decimal representation of fractions.

For any x ∈ Q, we can write

x = p

q

where p, q ∈ Z and q 6= 0. This fractional representation of a rational number uses
two integers, namely the numerator p and nonzero denominator q separated by a
horizontal line known as the vinculum. Let’s take a look at an example of this
representation in action.

EXAMPLE 5.3
The number

x = 2718
100

has numerator p = 2718 and denominator q = 100. A corresponding 4−digit deci-
mal representation of this number is given by

x = 27.18,

= d1 d0 . d−1 d−2,

= d1 · 101 + d0 · 100 + d−1 · 10−1 + d−2 · 10−2,

= d1 · 101 + d0 · 100 + d−1

101 + d−2

102 ,

=
1∑

k=−2
dk · 10k.

where d−2 = 8, d−1 = 1, d0 = 7, and d1 = 2.

Notice that the decimal expansions from Example 5.3 is exact: no approxima-
tions are involved in this work. Moreover, the decimal representation given in this
example finite since we can write an exact decimal expansion of the fraction 2718

100
using a set of 4 decimal digits {d−2, d−1, d0, d1}.

Let’s look back at our finite decimal expansion
x = 27.18 = d1 d0 . d−1 d−2

and notice two unique features of the way we write this decimal representations. In
particular, this number can be written in two parts

d1 d0︸ ︷︷ ︸
I

. d−1 d−2︸ ︷︷ ︸
II

=
(

d1 · 101 + d0 · 100
)

︸ ︷︷ ︸
part I

+
(

d−1 · 10−1 + d−2 · 10−2
)

︸ ︷︷ ︸
part II
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We use the radix point (also known as the decimal point for a base 10 representation)
to delimit the two parts. We then associate the digits to the left of the radix point,
namely d1d0, with nonnegative powers of ten. We call the string of digits to the
left of the radix point the integer part of our decimal expansion. This matches the
work we did to express integers using a decimal number system.

The second part of our number on the right side of our radix point includes the
digits d−1d−2. These digits are paired with negative powers of ten, with

0 . d−1 d−2 = d−1 · 10−1 + d−2 · 10−2 = d−1

101 + d−2

102 .

This string of digits to the right of the radix point is called the fractional part of
our decimal expansion.

With these observations in mind, we can now generalize our work. To this
end, let i, f ∈ Z be nonnegative integers. We say that say that a rational number
x ∈ Q has a finite decimal expansion if we can represent our number, using an exact
equality, in the form

x = di di−1 ... d2 d1 d0︸ ︷︷ ︸
integer part

. d−1 d−2 ... d−f︸ ︷︷ ︸
fractional part

where dk ∈ {0, 1, 2, ..., 9} for all k ∈ {i, i − 1, ..., 2, 1, 0,−1,−2, ...,−f}. The total
number of decimal digits used to represent this finite decimal expansion is

n = (i + 1) + f

where the integer part of our number di di−1 ... d2 d1 d0 is written using (i + 1)
decimal digits while the fractional part of our number 0 .d−1 d−2 ... d−f is expressed
with exactly f decimal digits. Let’s take a look at some other examples of rational
numbers that yield a finite decimal expansion.

EXAMPLE 5.4
Consider the rational number x ∈ Q given by

x = 12824
10 .

Here, our numerator is p = 12824 and our denominator is q = 10. This rational
number can be represented exactly using a finite decimal expansion with n = 5
decimal digits. More specifically, we can write

x = 1282.4,

= d3 d2 d1 d0 . d−1,

= d3 · 103 + d2 · 102 + d1 · 101 + d0 · 100 + d−1 · 10−1,

=
3∑

k=−1
dk · 10k.

where d−1 = 4, d0 = 2, d1 = 8, d2 = 2, and d3 = 1. The number i = 3 since the
integer part of our number, given by d3 d2 d1 d0 = 1282, is expressed using (i+1) = 4
decimal digits. The fractional part of our number 0 .d−1 = 0 .4 uses f = 1 digit.
We can quickly confirm the statement n = 5 = 4 + 1 = (i + 1) + f.
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EXAMPLE 5.5
Let’s consider a rational number x ∈ Q with fractional representation given by

x = 314159
100000 .

In this case, our numerator is p = 314159 and our denominator is q = 100000. We
write the associated n = 6 digit finite decimal expansion of this number as

x = 3.14159,

= d0 . d−1 d−2 d−3 d−4 d−5,

= d0 · 100 + d−1 · 10−1 + d−2 · 10−2 + d−3 · 10−3 + d−4 · 10−4 + d−5 · 10−5,

= d0 · 100 + d−1

101 + d−2

102 + d−3

103 + d−4

104 + d−5

105 ,

=
0∑

k=−5
dk · 10k.

where d−5 = 9, d−4 = 5, d−3 = 1, d−2 = 4, d−1 = 1, and d0 = 3. In this case, we
have i = 0 since we require exactly (i + 1) = 1 digits to write the integer part of
our number d0 = 3. We also see that, because the fractional part of this number
0.d−1d−2d−3d−4d−5 = 0.14159 is expressed with five digits, we have f = 5. Once
again, we confirm the fact that n = 6 = (0 + 1) + 5 = (i + 1) + f as we expect.

Not all rational numbers x ∈ Q can be expressed exactly using a finite decimal
approximation. For example, let’s take a look at the decimal representations of all
of the following rational numbers

244
3 = 81.3333... = 81.3

8972
7 = 1283.1428571428571... = 1283.142857

1
6 = 0.166666... = 0.16

In all of these cases, we are unable to write an exact, finite decimal expansion
of these x ∈ Q. To express these numbers exactly requires an infinite decimal
representation in the form

x = di di−1 ... d2 d1 d0 . d−1 d−2 ... d−f ... =
i∑

k=−∞
dk · 10k
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As we will see, there are two types of infinite decimal expansions. The examples
above are known as infinite recurring decimal expansions since the fractional parts of
these decimal representations eventually result in an endlessly repeating sequence of
decimal digits. As we establish below, any number x that yields an infinite recurring
decimal expansion must be an element of Q and yields a fractional representation
in the form

x = p

q

for some integers p, q ∈ Z where denominator q 6= 0. There are two algorithms
we can use to convert between an infinite recurring decimal representation and the
corresponding fractional representation of this number. Below we illustrate the first
of these algorithms based on a convenient algebraic technique.

EXAMPLE 5.6
Suppose we are given the following infinite recurring decimal expansion

x = 98.7654321321321... = 98.7654321

We can use the fact that our fractional part of our number has repeating digits
to do something creative. More specifically, we can multiply by the appropriate
powers of 10 and then subtract to eliminate the infinite recurring decimals. First,
we note that

104 · x = 10 000 · x = 987 654.321321321...

We shifted the decimal point four digits to the right so that the fractional part of
this new product is purely repeating. We can use this trick again to produce a
second number with the exact same repeating sequence of digits. More specifically,
we notice that if we shift the decimal point another three units to the right, we get
the exact same infinite repeating sequence of digits in the fractional part of this
second product.

107 · x = 10 000 000 · x = 987 654 321.321321...

Using our command of arithmetic, we determine that

107 · x− 104 · x = 987 654 321− 987 654

=⇒ (107 − 104) · x = 986 666 667

=⇒ x = 986 666 667
107 − 104 = 986 666 667

9 990 000

=⇒ x = 328 888 889
3 330 000

We have now produced an equivalent fractional representation for our original infi-
nite repeating decimal expansion.
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Let’s consider a second, equivalent method to convert our infinite recurring
decimal expansion into an equivalent fractional representation based on the famous
geometric series formulation that is often taught as part of an introduction to Taylor
Series polynomials in many calculus classes.

EXAMPLE 5.7
Suppose we are given the following infinite recurring decimal expansion

x = 98.7654321321321... = 98.7654321

Let’s first note that we can write this number using an infinite sum. To do so, we
consider the following relation

98.7654321321321... = 98.7654 + 0.0000321 + 0.0000000321 + 0.0000000000321 + · · ·

= 98.7654 + 321
107 + 321

1010 + 321
1013 + · · ·

= 98.7654 +
∞∑

i=0

321
10 3i+7

At this point we can recall our famous geometric series formula that states
n∑

k=1
rk = 1− rn+1

1− r

To this end, let’s focus on doing some algebra to make our infinite sum ammendable
to the geometric series formula we see above. The first technique we use is to turn
our infinite sum into the limit of a finite sum, as follows

∞∑
i=0

321
10 3k+7 = lim

n→∞

(
n∑

i=0

321
10 3i+7

)
We can now use a change of index variables and our dexterity in manipulating finite
sums to force our finite sum for this problem into the form we desire in order to
apply our geometric series formula. To this end, we notice that

n∑
i=0

321
10 3i+7 = 321

107 ·
n∑

i=0

1
10 3i

= 321
107 ·

n∑
i=0

(
1

10 3

)i

If we set r = 10−3 and k = i + 1, we see that we can write

98.7654321321321... = lim
n→∞

(
321
107 ·

n∑
k=1

rk

)
= lim

n→∞

321
107 ·

1− rn+1

1− r

Since r < 1, we know that lim
n→∞

rn+1 = 0. With this we conclude that

98.7654321321321... = 98.7654 + 321
107 ·

1
1− r

= 98.7654 + 321
107 ·

1
1− 1

103

We now can quickly produce an equivalent fractional representation for our original
infinite repeating decimal expansion.
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Fractional Representation for Infinite Recurring Decimals

Every infinite decimal expansion yields a corresponding fractional ex-
pansion. In other words, if x is a number with an infinite repeating
decimal expansion, then x ∈ Q.

Proof. Suppose that we are given an number x with infinite decimal expansion

x = didi−1...d2d1d0 . d−1d−2...d−nd−(n+1)...d−(n+r)

where a sequence of r ∈ N repeating digits. Without loss of generality, suppose
that x > 0. Notice that the integer part of this number has (i + 1)−decimal
digits while the fractional part of this number contains another n nonrepeating
decimal digits. Let’s begin our work here by simplifying our expression by setting
a0 = didi−1...d2d1d0 and ak = d−k for all k ∈ N. Then, we can rewrite our number
as

x = a0.a1a2...aman+1...a(n+r)

We can use multiplication by the proper power of 10 to shift our decimal point over
to the right by n places and produce a new number with a purely repeating fraction
part, with

10nx = 10na0 + a1a2...an . an+1...an+r

If we shift the decimal point another r places to the right, as follows

10n+rx = 10n+ra0 + a1a2...anan+1...an+r . an+1...an+r

then we get yet another number with an identical fractional part. Then, we find
that the difference between these two numbers is given by

10n+rx− 10nx = (10n+ra0 + a1a2...anan+1...an+r)− (10na0 + a1a2...an) = y

where y ∈ N is an integer with no fractional part. Then, we can write

x = y

10n+r − 10n
= y

10n (10r − 1)

We have just produced a fractional representation of x as the quotient of two integers
and thus we conclude that x ∈ Q.
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Now that we have a few example of rational numbers that yield a finite decimal
expansion, we might ask ourselves an important question: given the fractional rep-
resentation of any x ∈ Q, how might we be able to immediately ascertain whether
or not the corresponding decimal representation is finite?

Finite Decimal Representation Theorem

Let x ∈ Q be a positive rational number. The decimal expansion of
x will be finite if and only if the fractional representation of x can be
expressed with a denominator in the form

2j · 5k

for some nonnegative integers powers j, k ∈ {0, 1, 2, 3, ...}.

Proof. Let x ∈ Q yield a finite decimal representation in the form

x = a0 . a1 a2 ... an−1 an

= a0

100 + a1

101 + a2

102 + · · ·+ an−1

10n−1 + an

10n

= a0 · 10n

10n
+ a1 · 10n−1

10n
+ a2 · 10n−2

10n
+ · · ·+ an−1 · 101

10n
+ an

10n

= 1
10n

(
a0 · 10n + a1 · 10n−1 + a2 · 10n−2 + · · ·+ an−1 · 101 + an

)

=

(
n∑

k=0
ak · 10n−k

)
10n

= p

q

where p =
n∑

k=0
ak · 10n−k and q = 10n. This denominator q = 10n = 2n · 5n as was

to be shown.

We just demonstrated that if have a finite decimal representation of an x ∈ Q,
we must be able to produce a fractional representation of x with a denominator of
10n. Notice that we have not necessarily reduced this fractional representation to
lowest terms. In fact, we may be able to reduce this fraction by eliminating shared
factors in the numerator and denominator. However, the fact that we yielded a
denominator in the form 2j · 5k is enough in this instance.
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Let’s now prove the converse. In other words, let’s show that if we start with a
fraction that has a denominator equal to 2j ·5k for some nonnegative integers powers
j, k ∈ {0, 1, 2, 3, ...}, then we must be able to write a finite decimal expansion for
this fraction.

Proof. Assume x ∈ Q has a fractional representation x = t
q where t ∈ Z and

q = 2j · 5k for some nonnegative integers powers j, k ∈ {0, 1, 2, 3, ...}. Then we can
write

x = t

2j · 5k
= t

2j · 5k
· 2k

2k
· 5j

5j
= 2k · 5j · t

2j+k · 5j+k
= 2k · 5j · t

10j+k
.

Using this transformation, we see we can write

x = p

10n

where n = (j + k) and p = 2k · 5j · t. Moreover, since p ∈ Z, we can use a decimal
representation of this integer to write

p = 2k · 5j · t

= dn · 10n + dn−1 · 10n−1 + · · ·+ d2 · 102 + d1 · 101 + d0 · 100

=
n∑

i=0
di · 10i

We rewrite combine our fractional representation of x using this equivalent expres-
sion of our numerator to confirm that

x = dn · 10n + dn−1 · 10n−1 + · · ·+ d2 · 102 + d1 · 101 + d0 · 100

10n

= dn

100 + dn−1

101 + · · ·+ d2

10n−2 + d1

10n−1 + d0

10n

= a0 . a1 a2 ... an−1 an

where ai = dn−i for all i ∈ {0, 1, 2, ..., n − 1, n}. This is the exact finite decimal
expansion that we wanted to produce.

The theorems and proofs offered above provide us with a useful way to think
about whether or not a given rational numbers x ∈ Q yields a finite decimal expan-
sion. We now know that the only way a number x ∈ Q has a finite decimal expansion
is if we can reduce x to a fractional representation whose denominator contains only
powers of 2 and 5. We also know that the decimal expansion of a rational number
is either finite or endlessly repeating. Before we study the more general space of
numbers that require infinite, nonrepeating decimal expansions, let’s transfer our
hard-earned intuition about decimal fractions into binary representations.

© Jeffrey A. Anderson



Binary fractions
To begin, we recall that binary representations follow a similar pattern as in the

decimal case except that, in binary, we work with radix 2. We can then define a
finite binary expansion using some slight changes to our general structure suggested
above. To this end, let i, f ∈ Z be nonnegative integers. We say that say that a
rational number x ∈ Q has a finite binary representation if we can express our
number exactly in the form

x = bi bi−1 ... b2 b1 b0︸ ︷︷ ︸
integer part

. b−1 b−2 ... b−f︸ ︷︷ ︸
fractional part

where bk ∈ {0, 1} for all k ∈ {i, i − 1, ..., 2, 1, 0,−1,−2, ...,−f}. This is an m−bit
binary representation of a rational number, where is

m = (i + 1) + f.

Once again, we note that the (i+1)−bit integer part of x is given by bi bi−1 ... b2 b1 b0.
The f−bit fractional part of x is 0 .b−1 b−2 ... b−f . Let’s take a look at some other
examples of rational numbers that yield a finite binary expansion.

EXAMPLE 5.8
Let’s begin our work studying finite binary expansions with a relatively simple
example. In particular, suppose we want to represent

x = 3
2

using a finite binary expansion. We start by writing the numerator of x in terms of
powers of 2. One way to do this is to consider

2 · x = 3 = 2 + 1

= 21 + 20

= (11)2

This is an unsigned binary integer representation of the numerator 3. Now, we
divide our number 2 · x by 21 = 2 to find our corresponding binary expansion

2 · x
2 = 21 + 20

21

= 20 + 2−1

= ( 1.1 )2

= b0 . b−1.

This is a m−bit binary expansion of our rational number x ∈ Q, where

m = (i + 1) + f = 2

In this example, we have i = 0 and f = 1 since the integer part has i + 1 = 0 + 1
binary digits while the fractional part has f = 1 bits.

© Jeffrey A. Anderson



EXAMPLE 5.9
For our next example, let’s represent the rational number

x = 19
8

with a finite binary expansion. Again we begin by eliminating the denominator and
writing the numerator of x an unsigned binary integer:

8 · x = 19 = 16 + 2 + 1

= 24 + 21 + 20

= (10011)2

We now divide 8 · x by 23 to find our desired finite binary expansion

8 · x
8 = 24 + 21 + 20

23

= 21 + 2−2 + 2−3

= ( 10.011 )2

= b1 b0 . b−1 b−2 b−3.

This is a m−bit binary expansion of our rational number x ∈ Q, where

m = (i + 1) + f = 5

In this example, we have i = 1 and f = 3 since the integer part has 2 = i+1 = 1+1
bits while the fractional part has f = 3 bits.

In our example above, can write equivalent division problems in base 10 or base 2:

(2.375)10 =
(

19
8

)
10

=
(

10011
1000

)
2

= (10.011)2

When we divide our unsigned binary integer 10011 by 23 = 1000 has the effect of
shifting the binary point in the numerator three places to the left to yield the finite
binary expansion 10.011.
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EXAMPLE 5.10
Let’s consider the following fractional representation of the rational number

x = 749
64

Let’s begin the process of writing the binary representation of this number by
writing an expansion of x in terms of powers of 2. One way to do this is to consider

64 · x = 749 = 512 + 128 + 64 + 32 + 8 + 4 + 1

= 29 + 27 + 26 + 25 + 23 + 22 + 20

= (10111011001)2

This gives us an unsigned binary integer representation of the numerator. Now,
we can divide our number 64 · x by 26 = 64 to find our corresponding binary
representation

64 · x
64 = 29 + 27 + 26 + 25 + 23 + 22 + 20

26

= 23 + 21 + 20 + 2−1 + 2−3 + 2−4 + 2−6

= ( 1011.101101 )2

= b3 b2 b1 b0 . b−1 b−2 b−3 b−4 b−5 b−6.

This is a m−bit binary expansion, with

m = (i + 1) + f = 10.

Here we have i = 3 and f = 6 since the integer part has 4 = i + 1 = 3 + 1 bits while
the fractional part has f = 6 bits.

In Example 5.10 above, we can write the fractional representation problem in base
10 or base 2, yielding the equivalence

(11.703125)10 =
(

749
64

)
10

=
(

10111011001
1000000

)
2

= (1011.101101)2

Dividing our unsigned binary integer 10111011001 by the binary number 26 = 1000000,
this has the effect of shifting the binary point in the numerator six places to the
left. This is the binary analog of the effect of dividing by decimal integers by powers
of 10 that we observe in decimal arithmetic. Of course this makes sense since in
binary (2)10 = (10)2. In other words, to shift the binary point right or left by p
positions in a given number x ∈ Q, we multiply or divide x by the number 2p.
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Just as in the case of finite decimal representations, not all rational numbers
x ∈ Q can be expressed exactly using a finite binary expansion. For example, let’s
take a look at the decimal representations of all of the following rational numbers

(2.4)10 =
(

12
5

)
10

= (10.0110 0110 0110...)2 =
(
10.0110

)
2

(0.9)10 =
(

9
10

)
10

= (0.1 1100 1100 1100...)2 =
(
0.11100

)
2

(
45.73

)
10 =

(
686
15

)
10

= (101101.1011 1011 1011...)2 =
(
101101.1011

)
2

For each of these x ∈ Q, we are unable to write an exact, finite binary expan-
sion. Instead, in order to express these numbers exactly requires an infinite binary
expansion in the form

x = bi bi−1 ... b2 b1 b0 . b−1 b−2 ... b−f ... =
i∑

k=−∞
bk · 2k

This realization has very neat analogies to our comparisons between finite and
infinite recurring decimal expansions. More specifically, we might wonder what type
of rational numbers x ∈ Q yield an exact, finite binary expansion.

As we will see, there are two types of infinite binary expansions. The examples
above are known as infinite recurring binary expansions since the fractional parts of
these binary representations eventually result in an endlessly repeating sequence of
binary digits. Just as we did when our radix is 10, we will show that any number x
that has an infinite recurring binary expansion must be an element of Q and yields
a fractional representation in the form

x = p

q

for some integers p, q ∈ Z where denominator q 6= 0. For the radix 2 case, we
establish this fact using a base 2 analog of the same techniques we used to establish
this idea in the base 10 case. We begin with an example to study the major idea
we will use to prove this fact.
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EXAMPLE 5.11
Suppose we have the following infinite recurring binary expansion

x = 101.10110

Since the fractional part of our number has repeating binary digits, we can multiply
by the appropriate powers of 2 and then subtract to eliminate the infinite recurring
bits. To this end, we notice that(

25 · x
)

10 = (100 000 · x)2 =
(
10110110.0110

)
2

We shifted the decimal point five bits to the right so that the fractional part of this
new product is purely repeating. We use this technique once more to produce a
second product with the exact same repeating sequence of digits, with(

29 · x
)

10 = (1 000 000 000 · x)2 =
(
101101100110.0110

)
2

Using our command of arithmetic, we determine that

(
29 · x− 25 · x

)
10 = (1011 0110 0110− 1011 0110)2

=⇒
(
(29 − 25) · x

)
10 = (2918− 182)10

=⇒ x = 2736
29 − 25 = 2736

480

=⇒ x =
(

57
10

)
10

= (5.7)10

We have now produced an equivalent fractional representation for our original infi-
nite repeating decimal expansion.
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Fractional Representation for Infinite Recurring Bits

Every infinite binary expansion yields a corresponding fractional ex-
pansion. In other words, if x is a number with an infinite repeating
binary expansion, then x ∈ Q.

Proof. Suppose that we are given an number x with infinite decimal expansion

x = bibi−1...b2b1b0 . b−1b−2...b−nb−(n+1)...b−(n+r)

where a sequence of r ∈ N repeating bits. Without loss of generality, suppose
that x > 0. Notice that the integer part of this number has (i + 1)−decimal
digits while the fractional part of this number contains another n nonrepeating
binary digits. Let’s begin our work here by simplifying our expression by setting
a0 = bibi−1...b2b1b0 and ak = b−k for all k ∈ N. Then, we can rewrite our number
as

x = a0.a1a2...aman+1...a(n+r)

We can use multiplication by the proper power of 2 to shift our decimal point over
to the right by n places and produce a new number with a purely repeating fraction
part, with

2nx = 2na0 + a1a2...an . an+1...an+r

If we shift the decimal point another r places to the right, as follows

2n+rx = 2n+ra0 + a1a2...anan+1...an+r . an+1...an+r

then we get yet another number with an identical fractional part. Then, we find
that the difference between these two numbers is given by

2n+rx− 2nx = (2n+ra0 + a1a2...anan+1...an+r)− (2na0 + a1a2...an) = y

where y ∈ N is an integer with no fractional part. Then, we can write

x = y

2n+r − 2n
= y

2n (2r − 1)

We have just produced a fractional representation of x as the quotient of two integers
and thus we conclude that x ∈ Q.

Finite Binary Representation Theorem

Let x ∈ Q be a positive rational number. The binary expansion of x
will be finite if and only if the fractional representation of x can be
expressed with a denominator in the form

2j

for some nonnegative integer powers j ∈ {0, 1, 2, 3, ...}.

The proof of this proposition is left to the reader. Please look back on our work for
the base 10 analog of this theorem for some good ideas on how to start.
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Now that we have categorized the type of rational numbers that yield both infi-
nite recurring and finite decimal or binary expansions, let’s consider how we might
convert between decimal and binary expansions for x ∈ Q.

Converting x ∈ Q from Decimal to Binary
Converting x ∈ Q from Binary to Decimal
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number of digits used in a decimal expansion = the total number of decimal
digits used to express a value. This may include leading zeros at the beginning of a
number or trailing zeros at the end of a number. This may also include zeros at the
beginning of (the fractional part of) the number as these zeros only help to indicate
the location of the radix point.

minimum number of digits used in a decimal expansion = the minimum number
of decimal digits used to express a value. This will not include include leading zeros
at the beginning of a number or trailing zeros at the end of a number. This may
also include zeros at the beginning of (the fractional part of) the number as these
zeros only help to indicate the location of the radix point.
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