ENGR 11: Lesson 4 Suggested Problems

Theoretic Problems: Discussed in notes

1. Review of essential terms and concepts

- A. How do we add unsigned binary integers? When doing so, what is a carry bit?
- B. If we add two m-bit unsigned binary integers, how many bits might the sum be?
- C. What does the term *overflow* refer to?
- D. What happens if we try to add $(215 + 89)_{10}$ using MATLAB's uint8 data class? Why does this happen? What can we do to make sure our addition is calculated properly?
- E. What does the term *range expansion* refer to? How can we use MATLAB's uint data types to properly expand the range of unsigned integers? How do we know when we should do such an operation?
- F. What are signed integers?
- G. What is the *signed-magnitude representation* for signed integers? What are the two major drawbacks of this signed-magnitude representation?
- H. What is the twos-complement representation for signed integers?
- I. Does MATLAB use the signed-magnitude or twos complement representation for the four int data types? Why? How do you know this?
- J. What algorithm can we use to convert signed decimal integers into twos complement? Describe the steps in detail.
- K. What algorithm can we use to negate signed integers in twos complement form? Describe the steps in detail.
- L. How can we use each of the following data types in MATLAB: int8, int16, int32, int64?
- M. How does range expansion work in twos complement?

Problems Solved in Jeff's Notes

- 2. Complete each of the following sums in both decimal and binary
 - \Box Example 4.1: $(139 + 91)_{10}$
 - \Box Example 4.2: $(215 + 89)_{10}$
- 3. Recall the general notation for an (m + 1)-bit twos complement representation of the signed integer $x \in \mathbb{Z}$ given by $x = (b_m b_{m-1} \dots b_2 b_1 b_0)_{2C}$ where each digit b_i is either 0 or 1, if we interpreted x as an unsigned binary integer, then we could write the following sum

$$x = -b_m \cdot 2^m + b_{m-1} \cdot 2^{m-1} + \dots + b_1 \cdot 2^1 + b_0 \cdot 2^0 = -b_m \cdot 2^m \sum_{i=0}^{m-1} b_i \cdot 2^i$$

Explicitly convert each of the following twos complement representations into decimal form.

 \Box Example 4.3: $x = (1000\,0000)_{2C}$

- \Box Example 4.4: $x = (11111111)_{2C}$
- \Box Example 4.5: $x = (0101\ 1001)_{2C}$

4. Convert each of the following decimal representations into twos complement representations:

- \Box Example 4.6: $x = (-53)_{10}$
- \Box Example 4.7: $x = (-120)_{10}$
- \Box Create a table of all possible 8-bit twos complement signed integers

5. Negate each of the following signed integers in twos complement representations:

- \Box Example 4.8: $x = (-53)_{10}$
- \Box Example 4.9: $x = (-18)_{10}$
- \Box Example: $x = (-128)_{10}$
- \Box Example: $x = (0)_{10}$

6. Suppose B is a two complement signed integer. Let \overline{B} be the bitwise complement of B. Prove that

$$B + (\overline{B} + 1) = 0$$

What does this proof say about how we negate twos complement numbers?

Suggested Problems

20. Consider each of the following signed decimal integers:

A. $(-49)_{10}$ B. $(-75)_{10}$ C. $(1011)_{10}$ D. $(-31876)_{10}$

i. Convert these numbers into twos complement representations using paper and pencils analysis

- ii. Check your work using MATLAB
- 21. Consider each of the following signed binary integers in twos complement:

A. $(1111\ 1111)_{2C}$ B. $(1000\ 0001)_{2C}$ C. $(0101\ 0101\ 1110)_{2C}$ D. $(1001\ 1110\ 0110\ 0101)_{2C}$

- i. Convert these numbers into signed decimal integers using paper and pencils analysis
- ii. Check your work using MATLAB