
Lesson 4: Signed Integers

In Lesson 3, we explored the use of unsigned binary integers to encode nonnegative
decimal integers in the computer. We ended Lesson 3 by exploring MATLAB’s four
data classes for unsigned integers: uint8, uint16, uint32, and uint64. In Lesson
4, we extend our study of MATLAB by investigating four new data classes used to
store signed integers. As we will see, MATLAB’s data encoding scheme for signed
integers requires additional creative thought beyond a simple binary representation.

Addition of Unsigned Integers
Before we dive into a study of how to encode signed integers in MATLAB,

let’s take a detour. Specifically, let’s explore the operation of addition on a pair
of unsigned integers. To begin our discussion of addition, we consider a simplified
problem set. There are a total of four possible outcomes when we add two separate
1−bit unsigned integers. All four problems are shown below.

binary decimal
0 0

+ 0 = . + 0
0 0

1 1
+ 0 = . + 0

1 1

0 0
+ 1 = . + 1

1 1

1 1
+ 1 = . + 1

1 0 2

In each case, the addition proceeds very similar to decimal addition. However, out
of the four of these possible outcomes, the last one is the most interesting. In
particular, in binary arithmetic we have 1 + 1 = 10. Moreover, we see that when
adding two separate 1−bit unsigned binary integers, we can produce a 2−bit sum.
We can use this observation to define a carry for addition of n−bit unsigned binary
integers. Let’s explore some examples of how addition between unsigned numbers
generalizes when adding two integers encoded using MATLAB’s uint8 data class.

1

EXAMPLE 4.1
In this example, let’s consider the sum 139 + 91 carried out as a sum between two
variables stored using the uint8 data class. Below is the desired sum in both binary
and decimal arithmetic.

binary decimal

1 0
1
0

1
0 1

1
0

1
1 1

1
1

1
3 9

+ 0 1 0 1 1 0 1 1 = . + 9 1
1 1 1 0 0 1 1 0 2 3 0

Notice that we are able to perform this sum on our unsigned binary integers using
essentially the same method we use to add our two decimal integers. In both cases
we track the carry digit and use this information to calculate the proper value of
the next most significant digit.

Let’s take a look at another example of addition of unsigned binary integers.
However, in this case, we will consider a more interesting phenomenon.

EXAMPLE 4.2
In this example, let’s consider the sum 215 + 88 carried out as a sum between two
variables stored using the uint8 data class. Below is the exact value of the sum in
both binary and decimal arithmetic.

binary decimal

1
1 1

1
0

1
1

1
0

1
1

1
1 1

1
2

1
1 5

+ 0 1 0 1 1 0 0 1 = . + 8 9
1 0 1 1 1 0 0 0 0 3 0 4

Here we have something very interesting. The carry over bit (highlighted in gray)
on the most significant digit is nonzero and thus the exact binary result requires
9−bits to encode. However, the uint8 data class only provides 8−bits of data to
store our unsigned binary digits.

The example above provides our first insight into a more general condition that
occurs on finite precision machines. In particular, the result of the addition problem
above is a number whose binary representation is larger than can be stored in a
word size of 8−bits. This phenomenon is called overflow. Let’s take a look at what
happens when we attempt to execute this addition using MATLAB:

Lesson 4, Figure 1: Overflow that occurs when adding two uint8 integers

© Jeffrey A. Anderson Page 2 of 19

This result provides mathematical nonsense since MATLAB is claiming that 215 +
89 = 255. However, the key understanding behind this addition is to recognize that
overflow has occurred. As programmers, we need to be able to identify and address
these type of issues as they arise in our work.

Range extension for unsigned integers
Example 4.2 above demonstrates that we should be careful to encode our data

using a data class that is appropriate for our needs. Let’s redo example 4.2 using
MATLAB’s uint16 data class instead and see what happens.

Lesson 4, Figure 2: Fix overflow by encoding data using more bits via uint16

In the work above, we demonstrate a process of storing an 8−bit unsigned bi-
nary integer as a 16−bit unsigned binary integer. Let’s take a look at the impact
of this expansion on each of our addends from the overflow problem above:

decimal binary

2 1 5 = . 1 1 0 1 0 1 1 1 (uint8 encoding: 8-bits)
2 1 5 = . 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 (uint16 encoding: 16-bits)

8 9 = . 0 1 0 1 1 0 0 1 (uint8 encoding: 8-bits)
8 9 = . 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 (uint16 encoding: 16-bits)

We call the process of strategically expanding bit length range expansion, a
term that represents the idea that by using more bits to encode our numbers, we
can expand the range of unsigned integers that can be expressed and operated on
correctly. Notice that by expanding our range, we can easily execute our addition
problem because the carry continues into the 9−th most significant digit.

Page 3 of 19 © Jeffrey A. Anderson

Signed Integer Representations
All of the work we’ve done so far has been focused on storing and manipulating

nonnegative integers. Now, let’s figure out how we might store and manipulate
signed integers, which may take either positive or negative values. When working
with computer arithmetic, there are several alternative conventions that we might
use to store signed integers. All of these conventions depend on treating the most
significant (leftmost) bit in our word as sign bit. If the sign bit is 0, then the number
is positive. On the other hand, if the sign bit is 1, then the number is negative.

Simplest representation for signed integer (NOT used in MATLAB)

The simplest method we can use to represent signed integers called the sign-
magnitude representation. In this encoding scheme, signed integers are represented
as n−bit words where the rightmost (n− 1) bits store the magnitude of the integer
and the most significant (leftmost) bit stores the sign. Let’s take a look at how to
encode positive and negative integers using 8−bits via this convention:

binary decimal
0 0 0 1 1 0 1 1 = . + 9 1
1 0 0 1 1 0 1 1 = . − 9 1

We can write this representation mathematically using sigma notation. Recall
that for an (m + 1)−bit sequence of binary digits in the form y = bmbm−1...b2b1b0
where each digit bi is either 0 or 1, if we interpreted y as an unsigned binary integer,
then we could write the following sum

y = bm · 2m + bm−1 · 2m−1 + · · ·+ b1 · 21 + b0 · 20 =
m∑

i=0
bi · 2i

If, on the other hand, we interpret the sequence of (m + 1)−bits given by
bmbm−1...b2b1b0 as a signed integer encoded using the signed-magnitude represen-
tation, then we have a different realization given by

y = (−1)bm ·
(
bm−1 · 2m−1 + · · ·+ b1 · 21 + b0 · 20)

= (−1)bm︸ ︷︷ ︸
sign

·

(
m−1∑
i=0

bi · 2i

)
︸ ︷︷ ︸

magnitude

=

+

m−1∑
i=0

bi · 2i if bm = 0

−
m−1∑
i=0

bi · 2i if bm = 1

There are two major drawbacks of the signed-magnitude representation. These
include each of the following:

1. When adding signed integers that are encoded using the signed-magnitude
representation, we must consider the signs and the magnitudes of both num-
bers being added together to correctly implement our addition.

© Jeffrey A. Anderson Page 4 of 19

2. There are two representations of the number zero in the signed-magnitude
representation, given below. This ambiguity about the number 0 is incon-
venient because it makes testing a value for zero more difficult. As we will
see, testing a value for zero is a common operation that is used frequently in
computation. Thus, we want this test to be as simple as possible.

binary decimal
0 0 0 0 0 0 0 0 = . + 0
1 0 0 0 0 0 0 0 = . − 0

Because of these drawbacks, the signed integers classes in MATLAB do not store
signed integers in signed-magnitude representation. Instead, MATLAB uses the
very popular scheme to store signed integers known as twos complement 1

Twos complement representation for signed integer (used in MATLAB)

The twos complement encoding scheme for signed integers uses the most signif-
icant (leftmost) bit as a sign bit, where 0 encodes positive numbers and 1 encodes
negative numbers. This feature makes it very easy to test whether a signed inte-
ger is positive or negative. However, the twos complement representation of signed
integers differs from the signed-magnitude representation in a significant way. In
particular, in the twos complement representation of signed integers, we weight the
most significant bit using a very special scalar that provides desirable arithmetic
properties and avoids the drawbacks of the signed-magnitude representation.

To begin our development of this encoding scheme, let’s focus on the easiest
case relevant to MATLAB data classes. Suppose that we want to encode a signed
integer (either positive or negative) y ∈ Z using an 8−bit encoding scheme. Then,
the general binary representation for our integer will be as follows

y = b7 b6 b5 b4 b3 b2 b1 b0

where bi ∈ {0, 1} for all i = 0, 1, ..., 7. If y ≥ 0, we know that we want b7 = 0.
In this case, we the remaining 7−bits will represent the magnitude of our integer
y ∈ Z using our standard binary encoding (the same one we used to store unsigned
integers and in our signed-magnitude representation). In other words, for y ≥ 0,
we have b7 = 0 and

y = b6 · 26 + b5 · 25 + b4 · 24 + b3 · 23 + b2 · 22 + b1 · 21 + b0 · 20

=
6∑

i=0
bi · 2i

This yields a range of nonnegative integer values 0 ≤ y ≤ 27 − 1.
On the other hand, if we have a negative integer y < 0, the sign bit b7 is set

to one and we are free to define any encoding scheme we’d like for the remaining 7
bits. Because each bit has two possible values, we have a total of 27 different values
that we can use encode negative integers using these 7 bits. Thus, we expect that
with 8−bits of information, we can assign negative values between −1 ≤ y ≤ −27.

1In computer science literature, the terms two’s complement or 2’s complement often ap-
pear. However, the Institute of Electrical and Electronics Engineers (IEEE) publishes a number
of documents to define standards and terms. In the IEEE Std 100-1992, The New IEEE Stan-
dard Dictionary of Electrical and Electronics Terms, the IEEE society suggests that we omit the
apostrophe. We will adopt this convention here.

Page 5 of 19 © Jeffrey A. Anderson

When designing our encoding scheme, we want to assign bit values to negative
integers using an encoding scheme that makes arithmetic with negative numbers as
simple as possible. Remember that in the unsigned integer representation uint8,
we weight the most significant bit b7 with the scalar 27. For our twos complement
representation, it just so happens that if the weight on the most significant bit is
−27, then our binary signed integer representation will exhibit a number of desir-
able arithmetic properties, as we will see in this lesson. In other words, the twos
complement representation of signed integers is based on a weighted sum of bits,
where we weight the most significant bit with a negative power of two. For our
negative integer y < 0, we have

y = −b7 · 27 + b6 · 26 + b5 · 25 + b4 · 24 + b3 · 23 + b2 · 22 + b1 · 21 + b0 · 20

= −b7 · 27 +
6∑

i=0
bi · 2i

Notice, that this weighted sum interpretation is compatible with the previous work
we did. If b7 = 0, then the first term −b7 · 27 = 0 and we get a nonnegative integer
in the form mentioned above. If b7 = 1, then we subtract 27 from the value of the
summation and produce a negative number. Let’s take a look at how to convert a
few selected values of negative integers using this twos complement representation

EXAMPLE 4.3
Let’s take a look at how to encode the negative number y = −128 via the twos
complement representation. We claim, without formal argumentation, that the
proper encoding scheme for this number should be a binary number given by

1 0 0 0 0 0 0 0 = 1 0 0 0 0 0 0 0 = (8 0)16

Let’s confirm this claim by checking the math:
Weight (power) −27 26 25 24 23 22 21 20

Weight (decimal) −128 64 32 16 8 4 2 1
1 0 0 0 0 0 0 0 = . −128
twos compliment representation decimal

We are now in a position to investigate MATLAB’s use of twos complement to store
8−bit signed integers. The int8 data class is used precisely for this purpose. Let’s
take a look at storing the number y = −128 using this data class:

Lesson 4, Figure 3: Using int8 to store −128 in memory

© Jeffrey A. Anderson Page 6 of 19

EXAMPLE 4.4
Let’s use an 8−bit twos complement representation to encode the negative decimal
integer y = −1. The proper encoding for −1 in this representation is

1 1 1 1 1 1 1 1 = 1 1 1 1 1 1 1 1 = (f f)16

Let’s confirm this claim by checking the math:

Weight (power) −27 26 25 24 23 22 21 20

Weight (decimal) −128 64 32 16 8 4 2 1
1 1 1 1 1 1 1 1 = . −1
twos compliment representation decimal

Again, let’s use the int8 data class to store the number y = −1:

Lesson 4, Figure 4: Using int8 to store −1 in memory

Page 7 of 19 © Jeffrey A. Anderson

EXAMPLE 4.5
In our final example, let’s confirm that the twos compliment representation used
for the int8 data class does indeed use our standard binary representation for
nonnegative integers. We expect that the number y = 89 has the following 8−bit
binary representation

0 1 0 1 1 0 0 1 = 0 1 0 1 1 0 0 1 = (5 9)16

Let’s confirm this claim by checking the math:

Weight (power) −27 26 25 24 23 22 21 20

Weight (decimal) −128 64 32 16 8 4 2 1
0 1 0 1 1 0 0 1 = . 89
twos compliment representation decimal

Again, let’s use the int8 data class to store the number y = 89:

Lesson 4, Figure 5: Using int8 to store 89 in memory

The examples above demonstrate a useful mechanism we can use to convert twos
complement representations back into decimal form. These tables are based on a
more general illustration known as a value box in which the binary digit on the far
right of the box is weighted by 20 = 1 and the next most significant binary digit
(to the left) has double the weight until the leftmost position is reached which has
weight −27. The value box is a table without labels, as seen below as seen below:

−128 64 32 16 8 4 2 1
0 1 0 1 1 0 0 1

© Jeffrey A. Anderson Page 8 of 19

Convert from decimal to twos complement
The next natural question we might ask ourselves is how to convert a signed

integer in decimal representation into the corresponding twos compliment represen-
tation. To do so, we will use a three-step process known as the taking the twos com-
plement of an integer. Suppose we start with a nonnegative integer 0 ≤ y ≤ 27− 1.
To find the value x = −y and store this negative number via the twos complement
representation, we use the following three steps:

0. Find the binary representation of y = |x| as an 8−bit integer:
y = b7 b6 b5 b4 b3 b2 b1 b0 where b7 = 0.

1. Take the bitwise (Boolean) complement of each bit of the binary string (in-
cluding the sign bit b7) by changing each 1 to 0 and each 0 to 1.

2. Treat the result of step 2 as an unsigned binary integer and add 1

Let’s take a look at an example of how to accomplish this conversion.

EXAMPLE 4.6
Suppose we want to find an 8−bit twos complement representation of the number
x = −53. To do so, we execute all three steps in our process above. We begin by
finding the binary representation of y = +53

53 = 0 0 1 1 0 1 0 1 = 0 0 1 1 0 1 0 1 = (3 5)16

Now we find the bitwise complement of our binary number
binary representation of +53: 0 0 1 1 0 1 0 1

bitwise complement: 1 1 0 0 1 0 1 0
Now, to complete step 3, we add one to our result to find

1 1 0 0 1 0 1 0
+ 1

1 1 0 0 1 0 1 1
With this, we see that the twos complement representation of x = −53 is given by
1 1 0 0 1 0 1 1 = 1 1 0 0 1 0 1 1 = (c b)16.

EXAMPLE 4.7
Suppose we want to find an 8−bit twos complement representation of the number
x = −120. Once again, we run through our three-step algorithm. We begin by
finding the binary representation of y = +120 = |x|, given by

120 = 0 1 1 1 1 0 0 0 = 0 1 1 1 1 0 0 0 = (7 8)16

Now we find the bitwise complement of our binary number
binary representation of +120: 0 1 1 1 1 0 0 0

bitwise complement: 1 0 0 0 0 1 1 1
Now, to complete step 3, we add one to our result to find

1 0 0 0
1
0

1
1

1
1 1

+ 1
1 0 0 0 1 0 0 0

With this, we see that the twos complement representation of x = −53 is given by
1 0 0 0 1 0 0 0 = 1 0 0 0 1 0 0 0 = (8 8)16.

Page 9 of 19 © Jeffrey A. Anderson

Decimal 8−bit Twos Complement Hexadecimal
Representation Representation Representation

128 None None
127 0 1 1 1 1 1 1 1 7 f
126 0 1 1 1 1 1 1 0 7 e
125 0 1 1 1 1 1 0 1 7 d
124 0 1 1 1 1 1 0 0 7 c
123 0 1 1 1 1 0 1 1 7 b
122 0 1 1 1 1 0 1 0 7 a
121 0 1 1 1 1 0 0 1 7 9
120 0 1 1 1 1 0 0 0 7 8
119 0 1 1 1 0 1 1 1 7 7
118 0 1 1 1 0 1 1 0 7 6
117 0 1 1 1 0 1 0 1 7 5
116 0 1 1 1 0 1 0 0 7 4
115 0 1 1 1 0 0 1 1 7 3
114 0 1 1 1 0 0 1 0 7 2
113 0 1 1 1 0 0 0 1 7 1
112 0 1 1 1 0 0 0 0 7 0
...

...
...

8 0 0 0 0 1 0 0 0 0 8
7 0 0 0 0 0 1 1 1 0 7
6 0 0 0 0 0 1 1 0 0 6
5 0 0 0 0 0 1 0 1 0 5
4 0 0 0 0 0 1 0 0 0 4
3 0 0 0 0 0 0 1 1 0 3
2 0 0 0 0 0 0 1 0 0 2
1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0
-1 1 1 1 1 1 1 1 1 f f
-2 1 1 1 1 1 1 1 0 f e
-3 1 1 1 1 1 1 0 1 f d
-4 1 1 1 1 1 1 0 0 f c
-5 1 1 1 1 1 0 1 1 f b
-6 1 1 1 1 1 0 1 0 f a
-7 1 1 1 1 1 0 0 1 f 9
-8 1 1 1 1 1 0 0 0 f 8
...

...
...

-120 1 0 0 0 1 0 0 0 8 8
-121 1 0 0 0 0 1 1 1 8 7
-122 1 0 0 0 0 1 1 0 8 6
-123 1 0 0 0 0 1 0 1 8 5
-124 1 0 0 0 0 1 0 0 8 4
-125 1 0 0 0 0 0 1 1 8 3
-126 1 0 0 0 0 0 1 0 8 2
-127 1 0 0 0 0 0 0 1 8 1
-128 1 0 0 0 0 0 0 0 8 0

© Jeffrey A. Anderson Page 10 of 19

The table of values seen above presents the twos complement representation of
a selection of signed integers that can be stored via the int8 data class.

Negating an integer in twos complement
One of the really interesting features of the three-step conversion process out-

lined above is that steps 1 and 2 are the exact process we need to negate an integer.

EXAMPLE 4.8
Suppose, for example, we want to find the twos complement representation of
−(−53). Then, all we need to do is to negate

binary representation of -53: 1 1 0 0 1 0 1 1
bitwise complement: 0 0 1 1 0 1 0 0

+ 1
binary representation of +53: 0 0 1 1 0 1 0 1

EXAMPLE 4.9
Suppose we know that the 8−bit twos complement representation of the number
x = −18 is given as

−18 = 1 1 1 0 1 1 1 0 = 1 1 1 0 1 1 1 0 = (e e)16

To find the value of y = −x = 18, we can complete steps 2 and 3 from our process
outlined above. Let’s begin with step 2:

binary representation of -18: 1 1 1 0 1 1 1 0
bitwise complement: 0 0 0 1 0 0 0 1

Now, to complete step 3, we add one to our result to find

0 0 0 1 0 0
1
0 1

+ 1
0 0 0 1 0 0 1 0

By negating our twos complement representation of x = −18 we see that y = +18 =
−x has a twos complement representation given by

0 0 0 1 0 0 1 1 = 0 0 0 1 0 0 1 0 = (1 2)16.

Page 11 of 19 © Jeffrey A. Anderson

Mathematically, we can show this negation operation works by using summation
notation. Let’s suppose that our 8−bit sequence of binary digits

y = b7 b6 b5 b4 b3 b2 b1 b0

encodes a signed integer in twos complement representation with −127 ≤ y ≤ 127.
Thus, it’s decimal representation is given as

y = −b7 · 27 +
6∑

i=0
bi · 2i

Suppose also that the bitwise complement of binary digit bi is denoted as bi. In
other words, we say

bi =
{

1 if bi = 0,
0 if bi = 1.

With this definition in mind, we note that bi + bi = 1 for all values of i. To form
the bitwise complement of our number y, we consider the sequence of bits

b7 b6 b5 b4 b3 b2 b1 b0.

As outlined in our two-step process, we treat this string of binary digits as an
unsigned integer and add 1 to the value and interpret the sum as a twos complement
representation of a signed integer, with

x = b7 b6 b5 b4 b3 b2 b1 b0 + 1

= −b7 · 27 +
6∑

i=0
bi · 2i + 1

Now, we want to check that x = −y. To do so, we can equivalently confirm that
y + x = 0. Consider

y + x =
(
−b7 · 27 +

6∑
i=0

bi · 2i

)
+
(
−b7 · 27 +

6∑
i=0

bi · 2i + 1
)

= −
(
b7 + b7

)
· 27 + 1 +

6∑
i=0

(
bi + bi

)
· 2i

= −27 + 1 +
6∑

i=0
2i

= −27 + 1 + 27 − 1

= 0.

This is exactly what was to be shown.

© Jeffrey A. Anderson Page 12 of 19

The derivation on the previous page depends on the key assumption that we
can do treat the bitwise complement of y as an unsigned integer, then add 1 to this
value, and finally treat the result as an 8−bit signed integer in twos complement
representation. However, this assumption breaks down in two special cases. First,
let’s consider what happens when y = 0. When we take the bitwise complement,
we find the following:

binary representation of 0: 0 0 0 0 0 0 0 0
bitwise complement: 1 1 1 1 1 1 1 1

Then, when we add 1 to the result, assuming the form of an unsigned integer
addition, we get a carry out of the most significant bit position. This yields a 9−bit
output, as seen below:

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

+ 1
1 0 0 0 0 0 0 0 0

Since our output is stored in 8−bit format, we ignore the carry over bit (highlighted
in gray) and see that the negation of zero produces 0, as we expect from our intuition
in mathematics.

The other special case is more interesting. Suppose we want to negate y = −128.
Let’s do that below:

binary representation of -128: 1 0 0 0 0 0 0 0
bitwise complement: 0 1 1 1 1 1 1 1

+ 1
result : 1 0 0 0 0 0 0 0

Thus, our algorithm indicates that when we negate the bit pattern for y = −128,
we get the same bit pattern back again. This is clearly not correct mathematically.
However, this freak occurrence is unavoidable. Specifically, in 8−bits of information,
we have 28 = 256 possible bit patterns, which is an even number. When encod-
ing signed integers, we want to represent positive and negative integers as well as
the number 0. If we try to guarantee the same number of positive and negative
representations, then there must be two representations for the number zero (as in
the signed magnitude representation). On the other hand, if we want to guarantee
there is a unique representation of the number 0 (as in twos complement), then we
must have an unequal number of representations for positive and negative integers.
For an 8−bit twos complement representation, we are able to represent numbers
greater than or equal to −27 and less than or equal to +27 − 1. As we will see,
these type of special considerations are important when storing numbers in a digital
computer.

Page 13 of 19 © Jeffrey A. Anderson

Successful Integer addition via twos complement
One of the appealing features of twos complement is that addition (and subtrac-

tion) of a pair of signed integers proceed in the same manner as if the numbers were
unsigned integers. Let’s take a look at some successful examples of how addition of
signed integers represented in twos complement plays out.

EXAMPLE 4.10
Suppose we want to find the sum −45 + 22 using an 8−bit, twos complement
representation of these signed integers. The first step is to translate each number
into twos complement representation using our algorithm mentioned above. After
doing so, we see that

−45 = 1 1 0 1 0 0 1 1 = (d 3)16,

+22 = 0 0 0 1 0 1 1 0 = (1 6)16.

Then, we find the sum of the two numbers in the same exact way we did for signed
integers

binary representation of -45: 1 1
1
0 1

1
0

1
0 1 1 = −45

binary representation of +22: + 0 0 0 1 0 1 1 0 = +22
sum of -23: 1 1 1 0 1 0 0 1 = −23

Let’s confirm that our result is indeed what we need. Using our twos complement
representation we see:

11101001 = −b7 · 27 +
6∑

i=0
bi · 2i

= −b7 · 27 + b6 · 26 + b5 · 25 + b4 · 24 + b3 · 23 + b2 · 22 + b1 · 21 + b0 · 20

= −1 · 27 + 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

= −27 + 26 + 25 + 23 + 20

= −128 + 64 + 32 + 8 + 1

= −128 + 105 = −23 = (e 9)16.

This is exactly what we expect.

© Jeffrey A. Anderson Page 14 of 19

EXAMPLE 4.11
For this next successful example, let’s consider an addition problem of two positive
numbers. In particular, suppose we want to find the sum 75 + 113 using an 8−bit,
twos complement representation of these signed integers. Once again, we begin by
transforming each number into twos complement representation to see that

75 = 0 1 0 0 1 0 1 1 = (4 b)16,

+13 = 0 0 0 0 1 1 0 1 = (0 d)16.

Then, we find the sum of the two numbers in the same exact way we did for signed
integers

binary representation of +75: 0 1 0
1
0

1
1

1
0

1
1 1 = +75

binary representation of +13: + 0 0 0 0 1 1 0 1 = +13
sum of + 88: 0 1 0 1 1 0 0 0 = +88

Let’s confirm that our result is indeed what we need. Using our twos complement
representation we see:

01011000 = −b7 · 27 +
6∑

i=0
bi · 2i

= −b7 · 27 + b6 · 26 + b5 · 25 + b4 · 24 + b3 · 23 + b2 · 22 + b1 · 21 + b0 · 20

= −0 · 27 + 1 · 26 + 0 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 0 · 20

= 26 + 24 + 23

= 64 + 16 + 8

= 88 = (5 8)16

This is exactly what we expect.

EXAMPLE 4.12
Let’s consider adding two numbers in twos complement to produce a sum of 0. For
instance, lets find 57+−57 using an 8−bit twos complement representation of these
signed integers. We begin by noting that

+57 = 0 0 1 1 1 0 0 1 = (3 9)16,

−57 = 1 1 0 0 0 1 1 1 = (c 7)16.

We then sum these two numbers as if they were unsigned integers:

binary representation of +57
1
0

1
0

1
1

1
1

1
1

1
0

1
0 1 = +57

binary representation of -57: + 1 1 0 0 0 1 1 1 = −57
sum of 0: 1 0 0 0 0 0 0 0 0 = 0

In this case, there is a carry over bit beyond the end of the 8−bit word used to store
the output of this sum. This carry over bit (highlighted in gray above) is ignored
when adding signed integers stored in twos complement. Our result is indeed correct
since 00000000 = 0

Page 15 of 19 © Jeffrey A. Anderson

EXAMPLE 4.13
For this final successful example of twos complement addition, let’s consider the
addition of two negative numbers. Specifically, let’s find the sum −31 +−81 using
an 8−bit, twos complement representation of these signed integers. Just as before,
we start our work by writing each number using a twos complement representation
with

−31 = 1 1 1 0 0 0 0 1 = (e 1)16,

−81 = 1 0 1 0 1 1 1 1 = (a f)16.

Then, we find the sum of the two numbers in the same exact way we did for unsigned
integers

binary representation of -31
1
1

1
1 1

1
0

1
0

1
0

1
0 1 = −31

binary representation of -81: + 1 0 1 0 1 1 1 1 = −81
sum of -112: 1 1 0 0 1 0 0 0 0 = −112

Notice that there is a carry over bit beyond the end of the 8−bit word used to store
the output of this sum. This carry over bit (highlighted in gray above) is ignored
when adding signed integers stored in twos complement. Our result is indeed correct
since:

10010000 = −b7 · 27 +
6∑

i=0
bi · 2i

= −b7 · 27 + b6 · 26 + b5 · 25 + b4 · 24 + b3 · 23 + b2 · 22 + b1 · 21 + b0 · 20

= −1 · 27 + 0 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 0 · 20

= −27 + 24

= −128 + 16

= −112 = (9 0)16

In all of the four successful examples of twos complement addition given above,
we verified that twos complement addition may proceed as if the two numbers were
unsigned integers. In particular, if the result of our addition operation is positive
(as in examples 4.11), we produce the proper positive sum in twos complement
form. On the other hand, if the result of our addition operation is negative (as in
examples 4.10 and 4.13), we get the proper negative sum in twos complement form.
In two instances (examples 4.12 and 4.13), the twos complement addition produced
a carry over bit (highlighted in gray). In general, we ignore the carry over bit that
results from twos complement addition.

© Jeffrey A. Anderson Page 16 of 19

Overflow rule for twos complement addition
Not all addition in twos complement will produce a successful sum. In fact,

some addition problems may result in a sum that is larger than what we can store
in the word size being used to store the output. Let’s take a look at how this plays
out in practice by considering two examples.

EXAMPLE 4.14
For our first example of when twos complement addition is unsuccessful due to
overflow, let’s consider the addition of two positive numbers. Specifically, let’s find
the sum 113 + 91 using an 8−bit, twos complement representation of these signed
integers. Just as before, we start our work by writing each number using a twos
complement representation with

113 = 0 1 1 1 0 0 0 1 = (7 1)16,

91 = 0 1 0 1 1 0 1 1 = (5 b)16.

Then, we find the sum of the two numbers using unsigned addition:

binary representation of +113
1
0

1
1

1
1 1 0

1
0

1
0 1 = 113

binary representation of +91: + 0 1 0 1 1 0 1 1 = +91
sum of +204: 1 1 0 0 1 1 0 0 = Overflow

Even though both summands are positive, the twos complement addition produces
a result with opposite sign. This is a key feature of detecting overflow in two
complement addition.

EXAMPLE 4.15
For our next example illustrating when twos complement addition is unsuccessful
due to overflow, let’s addition of two negative numbers. Specifically, let’s find the
sum −113 + −91 using an 8−bit, twos complement representation of these signed
integers. We commence by finding the twos complement representation of each
summand:

−91 = 1 0 1 0 0 1 0 1 = (a 5)16,

−113 = 1 0 0 0 1 1 1 1 = (8 f)16.

We find the sum of the two numbers via unsigned addition:

binary representation of -91 1 0 1
1
0

1
0

1
1

1
0 1 = −91

binary representation of -113: + 1 0 0 0 1 1 1 1 = −113
sum of -204: 1 0 0 1 1 0 1 0 0 = Overflow

Both summands are negative and yet twos complement addition produces a positive
result, which is nonsense.

Examples 4.14 and 4.15 above lead to a general rule for detecting overflow in twos
complement addition.

OVERFLOW RULE FOR TWOS COMPLEMENT ADDITION

If two numbers with the same sign are added in twos complement, then
overflow occurs if and only if the resulting sum has the opposite sign
of our two summands.

Page 17 of 19 © Jeffrey A. Anderson

Subtraction rule for twos complement addition

SUBTRACTION RULE FOR TWOS COMPLEMENT

To subtract one number B from another number A, negate B (find the
twos complement of B) and then add this to the number A.

Range extension for twos complement representation of signed integers

RANGE EXPANSION RULE FOR TWOS COMPLEMENT

To take an 8−bit signed integer stored using the int8 data class and
store it as an m−bit signed integer (where m = 16, 32, or 64 corre-
sponding to the int16, int32, and int64 data classes, respectively),
we move the sign bit to the new leftmost significant position and fill in
all the rest of the bits with copies of the sign bit. For positive numbers,
we fill in all zeros. For negative numbers, we fill in all ones. This is
called sign extension.

© Jeffrey A. Anderson Page 18 of 19

Let’s recapitulate our major finding for the int8 signed integers class below.

Table 4.1: Characteristics of 8−Bit twos complement representation and arithmetic
as related to MATLAB’s int8 data class

PROPERTY DESCRIPTION

Range −27 ≤ y ≤ 27 − 1

Treatment of zero Provides a unique representation of zero.

Negation Take the bitwise (Boolean) complement of each bit
of the corresponding positive number.
Treat the resulting bit pattern as an unsigned integer
and add 1 to this result.

Overflow rule If two numbers with identical sign are added
in twos complement, then overflow occurs
if and only if the result has the opposite sign.

Subtraction rule To subtract B from A, take the
twos complement of B and add it to A.

Range Expansion To expand an int8 signed integer to
a sign integer data class with larger range,
move the sign bit to the new leftmost position
and fill in all extra bits with copies of the sign bit.

Page 19 of 19 © Jeffrey A. Anderson

