\qquad

ENGR 11: Lesson 3 Suggested Problems

Theoretic Problems: Discussed in notes

1. Review of essential terms and concepts

A. What are the most popular sets of numbers in mathematics (hint: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$)?
B. What is the difference between an unsigned integer and a signed integer?
C. What is the relationship between the position number and digit number associated with each digit of an unsigned integer representation (either binary or decimal)?
D. What is the relationship between the position number and the corresponding power of the radix associated with each digit of an unsigned integer representation (either binary or decimal)?
E. What does the word bit stand for? Compare and contrast the word bit to the phrase decimal digit: what are the similarities and differences between these terms?
F. What is the relationship between bits, nibbles, bytes, and words?
G. What do we mean when we say that the binary, decimal, and hexadecimal number systems are positional number systems?
H. Given a 4-bit string of binary digits, how many unique nibbles can be created from four bits?
I. Generate the hexadecimal table from memory that shows the relationship between 4 -bit binary nibbles, hexadecimal numbers $0-f$ and the decimal values associated with each of these numbers.
J. How many data types are native to the MATLAB Environment?
K. Name all 10 numerical data types that are native to MATLAB. In a few sentences, describe the intended use for each of these data types.
L. What do the phrases most significant digit and least significant digit refer to?
M. What is a radix and how does this word relate to the representations of numbers in this class?

N . What does the command format hex do in MATLAB?
O. How can we use each of the following data types in MATLAB: uint8, uint16, uint 32 , uint 64 ?

Problems Solved in Jeff's Notes

2. Recall the general notation for an $(n+1)$-decimal digit unsigned decimal representation of the unsigned integer $x \in \mathbb{Z}$ with $x \geq 0$ given by $x=\left(d_{n} d_{n-1} \ldots d_{2} d_{1} d_{0}\right)_{10}$ where each decimal digit $d_{i} \in\{0,1,2, \ldots, 9\}$ for all $i \in\{0,1, \ldots, n\}$. Also recall that

$$
y=d_{n} \cdot 10^{n}+d_{n-1} \cdot 10^{n-1}+\cdots+d_{1} \cdot 10^{1}+d_{0} \cdot 10^{0}=\sum_{i=0}^{n} d_{i} \cdot 10^{i}
$$

Explicitly convert each of the unsigned integers given below into this notation. When doing so, explicitly enumerate the position number and digit number of each decimal digit.

Example 3.1: $x=(15)_{10}$
Example 3.2: $x=(255)_{10}$
Example 3.3: $x=(65535)_{10}$
Example 3.4: $x=(4294967295)_{10}$
Example 3.5: $x=(654321)_{10}$
3. Recall the general notation for an $(m+1)$-bit unsigned binary representation of the unsigned integer $x \in \mathbb{Z}$ with $x \geq 0$ given by $x=\left(b_{m} b_{m-1} \ldots b_{2} b_{1} b_{0}\right)_{2}$ where each digit b_{i} is either 0 or 1 , if we interpreted x as an unsigned binary integer, then we could write the following sum

$$
y=b_{m} \cdot 2^{m}+b_{m-1} \cdot 2^{m-1}+\cdots+b_{1} \cdot 2^{1}+b_{0} \cdot 2^{0}=\sum_{i=0}^{m} b_{i} \cdot 2^{i}
$$

Explicitly convert each of the unsigned integers given below into this notation. When doing so, explicitly enumerate the position number and digit number of each decimal digit.

Example 3.6: $x=(11)_{2}$
Example 3.7: $x=(1001)_{2}$
Example 3.8: Write out all possible 4-bit unsigned binary integersExample 3.9: $x=(1100100)_{2}$
Example 3.10: $x=(11111111)_{2}$
4. Create a table of the powers of 2 from 2^{0} to 2^{32}. Memorize all powers of 2 from 2^{0} to 2^{12}
5. Using paper and pencil analysis each of the following unsigned decimal integers into binary form:Example 3.11: $x=(11)_{10}$Example 3.13: $x=(145)_{10}$

Suggested Problems

20. Consider each of the following unsigned decimal integers:
A. $(247)_{10}$
B. $(543)_{10}$
C. $(4095)_{10}$
D. $(51203)_{10}$
i. Convert these numbers into unsigned binary integers using paper and pencils analysis
ii. Check your work using MATLAB's dec2bin function
iii. Convert these numbers into unsigned hexadecimal integers using paper and pencils analysis
iv. Check your work using MATLAB's dec2hex function
21. Consider each of the following unsigned binary integers:
A. $(1011)_{2}$
B. $(01101001)_{2}$
C. $(011100001110)_{2}$
D. $(0001101100101101)_{2}$
i. Convert these numbers into unsigned decimal integers using paper and pencils analysis
ii. Check your work using MATLAB's bin2dec function
iii. Convert these numbers into unsigned hexadecimal integers using paper and pencils analysis
iv. Check your work using the bin2hex function that you downloaded for problem 1 of Lab 3
22. Consider each of the following unsigned hexadecimal integers:
A. $(\mathrm{e} 3)_{16}$
B. $(\mathrm{d} 9 \mathrm{a})_{16}$
C. $(1 \mathrm{a} 4 \mathrm{c})_{16}$
D. $(\mathrm{ffffffff})_{16}$
i. Convert these numbers into unsigned binary integers using paper and pencils analysis
ii. Check your work using the hex2bin function that you downloaded for problem 1 of Lab 3
iii. Convert these numbers into unsigned decimal integers using paper and pencils analysis
iv. Check your work using MATLAB's hex2dec function
