ENGR 11: Lesson 3 Suggested Problems

Theoretic Problems: Discussed in notes

1. Review of essential terms and concepts

- A. What are the most popular sets of numbers in mathematics (hint: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$)?
- B. What is the difference between an unsigned integer and a signed integer?
- C. What is the relationship between the position number and digit number associated with each digit of an unsigned integer representation (either binary or decimal)?
- D. What is the relationship between the position number and the corresponding power of the radix associated with each digit of an unsigned integer representation (either binary or decimal)?
- E. What does the word *bit* stand for? Compare and contrast the word *bit* to the phrase decimal digit: what are the similarities and differences between these terms?
- F. What is the relationship between bits, nibbles, bytes, and words?
- G. What do we mean when we say that the binary, decimal, and hexadecimal number systems are *positional number systems*?
- H. Given a 4-bit string of binary digits, how many unique nibbles can be created from four bits?
- I. Generate the hexadecimal table from memory that shows the relationship between 4-bit binary nibbles, hexadecimal numbers 0 f and the decimal values associated with each of these numbers.
- J. How many data types are native to the MATLAB Environment?
- K. Name all 10 numerical data types that are native to MATLAB. In a few sentences, describe the intended use for each of these data types.
- L. What do the phrases most significant digit and least significant digit refer to?
- M. What is a *radix* and how does this word relate to the representations of numbers in this class?
- N. What does the command format hex do in MATLAB?
- O. How can we use each of the following data types in MATLAB: uint8, uint16, uint32, uint64?

Problems Solved in Jeff's Notes

2. Recall the general notation for an (n+1)-decimal digit unsigned decimal representation of the unsigned integer $x \in \mathbb{Z}$ with $x \ge 0$ given by $x = (d_n d_{n-1} \dots d_2 d_1 d_0)_{10}$ where each decimal digit $d_i \in \{0, 1, 2, \dots, 9\}$ for all $i \in \{0, 1, \dots, n\}$. Also recall that

$$y = d_n \cdot 10^n + d_{n-1} \cdot 10^{n-1} + \dots + d_1 \cdot 10^1 + d_0 \cdot 10^0 = \sum_{i=0}^n d_i \cdot 10^i$$

Explicitly convert each of the unsigned integers given below into this notation. When doing so, explicitly enumerate the position number and digit number of each decimal digit.

- \Box Example 3.1: $x = (15)_{10}$
- \Box Example 3.2: $x = (255)_{10}$
- $\hfill\square$ Example 3.3: $x=(65535)_{10}$
- $\hfill\square$ Example 3.4: $x = (4294967295)_{10}$
- \Box Example 3.5: $x = (654321)_{10}$
- 3. Recall the general notation for an (m + 1)-bit unsigned binary representation of the unsigned integer $x \in \mathbb{Z}$ with $x \ge 0$ given by $x = (b_m b_{m-1} \dots b_2 b_1 b_0)_2$ where each digit b_i is either 0 or 1, if we interpreted x as an unsigned binary integer, then we could write the following sum

$$y = b_m \cdot 2^m + b_{m-1} \cdot 2^{m-1} + \dots + b_1 \cdot 2^1 + b_0 \cdot 2^0 = \sum_{i=0}^m b_i \cdot 2^i$$

Explicitly convert each of the unsigned integers given below into this notation. When doing so, explicitly enumerate the position number and digit number of each decimal digit.

- \Box Example 3.6: $x = (11)_2$
- \Box Example 3.7: $x = (1001)_2$
- \Box Example 3.8: Write out all possible 4-bit unsigned binary integers
- \Box Example 3.9: $x = (110\,0100)_2$
- \Box Example 3.10: $x = (11111111)_2$
- 4. Create a table of the powers of 2 from 2^0 to 2^{32} . Memorize all powers of 2 from 2^0 to 2^{12}
- 5. Using paper and pencil analysis each of the following unsigned decimal integers into binary form:
 - \Box Example 3.11: $x = (11)_{10}$
 - \Box Example 3.13: $x = (145)_{10}$

Suggested Problems

- 20. Consider each of the following unsigned decimal integers:
 - A. $(247)_{10}$ B. $(543)_{10}$ C. $(4095)_{10}$ D. $(51203)_{10}$
 - i. Convert these numbers into unsigned binary integers using paper and pencils analysis
 - ii. Check your work using MATLAB's dec2bin function
 - iii. Convert these numbers into unsigned hexadecimal integers using paper and pencils analysis
 - iv. Check your work using MATLAB's dec2hex function

21. Consider each of the following unsigned binary integers:

A. (1011)₂ B. (01101001)₂ C. (011100001110)₂ D. (0001101100101101)₂

- i. Convert these numbers into unsigned decimal integers using paper and pencils analysis
- ii. Check your work using MATLAB's bin2dec function
- iii. Convert these numbers into unsigned hexadecimal integers using paper and pencils analysis
- iv. Check your work using the bin2hex function that you downloaded for problem 1 of Lab 3

22. Consider each of the following unsigned hexadecimal integers:

- A. $(e 3)_{16}$ B. $(d 9 a)_{16}$ C. $(1 a 4 c)_{16}$ D. $(fffffff)_{16}$
 - i. Convert these numbers into unsigned binary integers using paper and pencils analysis
 - ii. Check your work using the hex2bin function that you downloaded for problem 1 of Lab 3
- iii. Convert these numbers into unsigned decimal integers using paper and pencils analysis
- iv. Check your work using MATLAB's hex2dec function