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Matrix-Matrix Multiplication

One of the major themes of linear algebra is to build more advanced technology by
adapting existing technology is special ways. This is the main message of the fun
story of the mathematician and her coffee pot. Based on this strategy, we define
matrix-matrix multiplication using the work we did to develop the matrix-vector
multiplication operation. Before we do this, let’s explore some terminology we can
use to described the various parts of each matrix-matrix product.

Let A ∈ Rm×p and X ∈ Rp×n. The output of the matrix-matrix multiplication

A ·X = B (5.1)

is the matrix B ∈ Rm×n, which is also called the product of A and X. The matrix-
matrix multiplication operation is a map between vector spaces

· : Rm×p × Rp×n −→ Rm×n.

This operation has two inputs and one output. The left argument or the left factor
of the matrix product (5.1) is the matrix A ∈ Rm×p on the left side of the mul-
tiplication sign. On the other hand, the right argument or right factor of this
product (5.1) is matrix X ∈ Rp×n on the right side of the multiplication sign.

We say that we multiply A on the right by X if we start with a modeling matrix
A in the left argument and place matrix X in the right argument to do algebraic
work. To multiply of A on the right by X, the number of columns of the left matrix
A must be equal to the number of rows of the right matrix X.

If the column dimension of A equals the row dimension of X, we say that A is
conformable for right multiplication by X. In other words: “the inner dimensions
must agree!” If the number of rows of X does not match the column dimension of
A, we say that matrix A is nonconformable for matrix-matrix multiplication on
the right by X.

EXAMPLE 5.3.1
Consider the following matrices:

A =

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 , X =


x11 x12
x21 x22
x31 x32
x41 x42

 , Y =
[
y11 y12 y13
y21 y22 y23

]
.

The column dimension of A and the row dimension of X both equal four. Thus,
the inner dimensions agree. We conclude that matrices A and X are conformable
to matrix-matrix multiplication. If we define A×X = B, we define the dimensions
of B using the “outer dimensions” of A and X. Specifically, the row dimension of
B is equal to the row dimension of A while the column dimension of B is equal to
that of X. In this case, we see that B ∈ R3×2.
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Definition 5.1

Matrix-matrix multiplication via linear combination of columns

Let A ∈ Rm×p and X ∈ Rp×n. If we multiply A on the right by X to
form the m× n matrix B = A ·X, then

Columnk(B) = A · Columnk(X),

for k ∈ {1, 2, ..., n}. In other words, the kth column of B is the matrix A
multiplied on the right by the kth column of X. This operation is written
using colon notation as

B(:, k ) = A ·X(:, k ).

The kth column of the product A ·X = B is a linear combination of the columns
of matrix A with scalar weights defined by the individual entries in the kth column
of X. We can write the kth column of the product B as an m× 1 column with

B(:, k ) =


b1k

b2k

...
bmk

 = x1k


a11
a21
...

am1

+ x2k


a12
a22
...

am2

+ · · ·+ xpk


a1p

a2p

...
amp


Using this definition, we execute matrix-matrix multiplication one column at

a time to build the output matrix B. Looking back at our work to develop the
matrix-vector multiplication operation, we have multiple options for how to exe-
cute each matrix-column-vector product used in the more general matrix-matrix
multiplication.

This definition 5.1 for matrix-matrix multiplication via linear combination of
column vectors suggests a useful framework. We multiply a modeling matrix A on
the right by a matrix X when we want to manipulate the columns of matrix A
in some way. Through the rest of our work together, we learn many strategies for
choosing the matrixX to accomplish the algebraic work of transforming the columns
of A. The overarching theme is to apply a series of transformations that results in
an equivalent system of equations (written in the form of one of our fundamental
problems). If we do our work well, the equivalent system that we construct can
be solved using simple algorithms implemented on computers and the solution we
calculate is almost exactly the solution we desire.
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EXAMPLE 5.3.2
Define a 4× 3 matrix

A =


1 0 0
−1 1 0

0 −1 1
0 0 −1


Suppose we wish to double column one of A and leave the other columns untouched.
To this end, we multiply A on the right-hand side by an appropriately sized dilation
matrix:

B = A ·D1(2) =


1 0 0
−1 1 0

0 −1 1
0 0 −1


2 0 0

0 1 0
0 0 1


Let’s begin by calculating the first column of the product

B(:, 1) =


1 0 0
−1 1 0

0 −1 1
0 0 −1


2

0
0

 = 2 ·


1
−1

0
0

+ 0 ·


0
1
−1

0

+ 0 ·


0
0
1
−1

 =


2
−2

0
0


Next, let’s calculate the second column of B, given as a linear combination of the
columns of A with scaling coefficients coming from the second column of D1(2).

B(:, 2) =


1 0 0
−1 1 0

0 −1 1
0 0 −1


0

1
0

 = 0 ·


1
−1

0
0

+ 1 ·


0
1
−1

0

+ 0 ·


0
0
1
−1

 =


0
1
−1

0


Finally, we calculate the last column of B as

B(:, 3) =


1 0 0
−1 1 0

0 −1 1
0 0 −1


0

0
1

 = 0 ·


1
−1

0
0

+ 0 ·


0
1
−1

0

+ 1 ·


0
0
1
−1

 =


0
0
1
−1


We have now constructed a column partition of B. We can create the entire matrix
B by combining together our three matrix-vector products

B =


1 0 0
−1 1 0

0 −1 1
0 0 −1


2 0 0

0 1 0
0 0 1

 =


2 0 0
−2 1 0

0 −1 1
0 0 −1


We see that right multiplication by D1(2) scaled the first column of A and left all
other columns untouched. We also see that D1(2) has to be a 3 × 3 matrix since
the column dimension of A is equal to three.

Using the example above, we can extrapolate a more general pattern. Suppose
we want to scale the kth column of A ∈ Rm×n by the number c. Then we will
multiply A on the right by the n× n dilation matrix Dk(c).
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EXAMPLE 5.3.3
Let’s use matrix-matrix multiplication to permute the columns 2 and 3 of a matrix.
To this end, let A ∈ R4×4. Let P23 be the transposition matrix generated by
swapping the second and third column of the identity matrix. Then consider

B = A · P23 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


In this case, let’s use the column-partition version to find each column of B. To
this end consider, let’s begin by finding the first column of B

B(:, 1) = AP23(:, 1) =
[

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

][
1
0
0
0

]
= 1

[
a11
a21
a31
a41

]
+ 0

[
a12
a22
a32
a42

]
+ 0

[
a13
a23
a33
a43

]
+ 0

[
a14
a24
a34
a44

]
=
[

a11
a21
a31
a41

]
.

Now, let’s move onto the second column of B

B(:, 2) = AP23(:, 2) =
[

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

][
0
0
1
0

]
= 0

[
a11
a21
a31
a41

]
+ 0

[
a12
a22
a32
a42

]
+ 1

[
a13
a23
a33
a43

]
+ 0

[
a14
a24
a34
a44

]
=
[

a13
a23
a33
a43

]
.

To find the third column of our product, we calculate

B(:, 3) = AP23(:, 3) =
[

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

][
0
1
0
0

]
= 0

[
a11
a21
a31
a41

]
+ 1

[
a12
a22
a32
a42

]
+ 0

[
a13
a23
a33
a43

]
+ 0

[
a14
a24
a34
a44

]
=
[

a12
a22
a32
a42

]
.

Finally, the last column of our product is given by

B(:, 3) = AP23(:, 4) =
[

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

][
0
0
0
1

]
= 0

[
a11
a21
a31
a41

]
+ 0

[
a12
a22
a32
a42

]
+ 0

[
a13
a23
a33
a43

]
+ 1

[
a14
a24
a34
a44

]
=
[

a14
a24
a34
a44

]
.

Once again, we can extrapolate a more general pattern from the example above.
Suppose we want to swap columns i and j in the matrix A ∈ Rm×n. Then we will
multiply A on the right by the n× n transposition matrix Pij .
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The definition for matrix-matrix multiplication via linear combination of column
vectors 5.1 provides a useful alternative perspective on calculating the dot product
between two vectors x,y ∈ Rn×1. Specifically, let’s consider the entry-by-entry
definition of each column vector, given by

x =


x1
x2
...
xn

 and y =


y1
y2
...
yn

 .
Then, we can consider the matrix-matrix product given by

yT x =
[
y1 y2 · · · yn

]

x1
x2
...
xn

 = x1y1 + x2y2 + · · ·+ xnyn = x · y.

In other words, we can express each dot product as a matrix-matrix multiplication
using the transpose. We reached this c we take linear combinations of the columns
of the matrix yT and scale those columns via the individual entries of the vector x.
This results in a matrix-matrix multiplication formula for the dot product given by

x · y = yT x
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Sometimes we want to construct a matrix-matrix product by rows instead of by
columns. We say that we multiply modeling matrix A on the left by the algebraic
worker X when we put A in the right argument and hit it on the left with the
matrix X. To multiply A on the left by X, the number of columns of the left matrix
X must equal the number of rows of the right matrix A. If the row dimension
of A equals the column dimension of X, we say that A is conformable for left
multiplication by X. Again, the inner dimensions must agree. If the dimensions
of A are NOT suitable to multiply on the left by X, we say that matrix A is
nonconformable for multiplication on the left by X.

Definition 5.2

Matrix-matrix multiplication via linear combination of rows

Let A ∈ Rp×n and X ∈ Rm×p. If we multiply A on the left by X to form
the m× n matrix B = X ·A, then

Rowi(B) = Rowi(X) ·A,

for i ∈ {1, 2, ...,m}. In other words, the ith row of B is the matrix A
multiplied on the left by the ith row of X. This operation is written
using colon notation as

B(i, :) = X(i, :) ·A

The ith row of the product B = X ·A is a linear combination of the rows of matrix
A with scalar weights defined by the individual entries in the ith row of X. Using
this definition, we execute matrix-matrix multiplication one row at a time to build
the individual rows of the output matrix B. For the ith row of the product, we
calculate [

bi1 bi2 · · · bin

]
= xi1

[
a11 a12 · · · a1n

]
+ xi2

[
a21 a22 · · · a2n

]
...

+ xip

[
ap1 ap2 · · · apn

]
In such a way we construct the row partitions version of B. We say that we multiply
A on the left by X if A is the right argument and X is the left argument. When
multiplying A on the left by a matrix, we usually want to manipulate the rows
of matrix A in some way. In this case, we think of A as the modeling matrix
we start with, and then we choose X to do some special algebraic work. In left
multiplication, we use the row version of matrix multiplication to manipulate the
rows of A appropriately.
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EXAMPLE 5.3.4
Let A ∈ R4×3. Suppose we wish to use matrix-matrix multiplication to multiply
row i by 23−i. To this end, consider the following product:

B = DA where D =


4 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0.5


Let’s begin by finding the first row of the product B:

B(1, : ) = D(1, : )A = 4 [a11 a12 a13] + 0 [a21 a22 a23] + 0 [a31 a32 a33] + 0 [a41 a42 a43] = [4a11 4a12 4a13]

In words we see that the first row of the product is 4 times the first row of the
matrix A. Let’s move onto the second row of our desired output.

B(2, : ) = D(2, : )A = 0 [a11 a12 a13] + 2 [a21 a22 a23] + 0 [a31 a32 a33] + 0 [a41 a42 a43] = [2a21 2a22 2a23]

Once again, the second row of the product is two times the second row of A. The
third row of our output follows from a similar calculation:

B(3, : ) = D(3, : )A = 0 [a11 a12 a13] + 0 [a21 a22 a23] + 1 [a31 a32 a33] + 0 [a41 a42 a43] = [a31 a32 a33]

We finish our work with the final row given by

B(4, : ) = D(4, : )A = 0 [a11 a12 a13] + 0 [a21 a22 a23] + 0 [a31 a32 a33] + 1
2 [a41 a42 a43] = [ 1

2 a41 1
2 a42 1

2 a43]

There is something special about the pattern we see here. Once again, the final row
of B is just the last row of A multiplied by 0.5. What is the pattern you observe?
Can you generalize? Make a conjecture about what is true when multiplying a
matrix A on the left by a diagonal matrix. What happens if we multiply A on the
right by a diagonal matrix? For readers who enjoy going deeper, take a look at the
example above. How many different ways can you prove to yourself that

D = D1(4)D2(2)D3(1)D4(0.5) = D4(0.5)D3(1)D2(2)D1(4).
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EXAMPLE 5.3.5
Let A ∈ R4×4 be given as

A =


1 −1 0 0
0 0 1 −1
−2 0 2 0

0 1 0 −1


Let S31(2) be the shear matrix generated by taking the identity matrix I4 ∈ R4×4

and changing the zero value of the entry in row 3, column 1 into the number 2.
Now let’s calculate the matrix-matrix produce

B = S31(2)A =


1 0 0 0
0 1 0 0
2 0 1 0
0 0 0 1




1 −1 0 0
0 0 1 −1
−2 0 2 0

0 1 0 −1


We progress row-by-row starting with the first one with

B(1, : ) = 1 [1 −1 0 0] + 0 [0 0 1 −1] + 0 [−2 0 2 0] + 0 [0 1 0 −1] = [1 −1 0 0]

Let’s move onto the second row:

B(1, : ) = 0 [1 −1 0 0] + 1 [0 0 1 −1] + 0 [−2 0 2 0] + 0 [0 1 0 −1] = [0 0 1 −1]

The third row of the product is by far the most interesting:

B(3, : ) = 2 [1 −1 0 0] + 0 [0 0 1 −1] + 1 [−2 0 2 0] + 0 [0 1 0 −1] = [0 −2 2 0]

This result comes from adding two times row 1 to row 3 and putting that output
back into row 3. The final row of the product is given by

B(4, : ) = 0 [1 −1 0 0] + 0 [0 0 1 −1] + 0 [−2 0 2 0] + 1 [0 1 0 −1] = [0 1 0 −1]

Putting this all together, we see

B = S31(2)A =


1 0 0 0
0 1 0 0
2 0 1 0
0 0 0 1




1 −1 0 0
0 0 1 −1
−2 0 2 0

0 1 0 −1

 =


1 −1 0 0
0 0 1 −1
0 −2 2 0
0 1 0 −1


Rows 1, 2, and 4 are unaffected by the product. Row 3 of B comes from adding
2 times row 1 of A to row 3. Just as in our last example, this work highlights a
larger pattern. How can you generalize? Make a conjecture about what is true
when multiplying a matrix A on the left by the shear matrix Sik(c). What happens
if we multiply A on the right by the shear matrix Sik(c)?
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In our work to develop the definitions of matrix-matrix multiplication via linear
combinations of column vectors 5.1 and row vectors 5.2, we construct the output
by thinking about the product in terms of vector-valued information. In the case of
column vectors, we construct the kth column of B = AX by taking linear combi-
nation of the columns of A with scalar multiples coming from the individual entries
of the kth column of X. Similarly, for B = XA, we build the ith row of the output
by taking linear combinations of the rows of A with the scalar coefficients coming
from the individual entries of the ith row of X. In both cases, we’re thinking about
vectorized data. Specifically, we’re partitioning the modeling matrix A into vectors
in order to execute vector-valued operations to produce our desired output.

One of the major themes of our work together is to develop multiple representa-
tions for every idea that we study. In the case of matrix-matrix multiplication, we
can shift our gaze from a vector perspective towards a scalar perspective. Specifi-
cally, using the dot product operation, we can generate the individual entries of the
output B by taking dot products between vectors stored in both A and X. Let’s
develop a definition that gives yet a third approach to thinking about matrix-matrix
multiplication.

Definition 5.3

Matrix-matrix multiplication via dot products

Let A ∈ Rm×p and X ∈ Rp×n. The product B = A · X is the m × n
matrix whose value in the ith row and kth entry is given by

bik = Rowi(A) · Columnk(X) = A(i, : ) ·X( : , k).

for i ∈ {1, 2, ...,m} and k ∈ {1, 2, ..., n}.

Notice that each entry in B is given by the dot product

bij =
[
ai1 ai2 · · · aip

]

x1k

x2k

...
xpk

 = ai1x1k + ai2x2k + · · ·+ aipxpk =
p∑

j=1
aijxjk.

The (i, k)th entry of B is an inner product between the ith row of A (viewed
as a column vector) and the kth column of X. The entry-by-entry definition of
the matrix product is very efficient for calculating the individual entries of A · X
when working on small problems by hand. This is the method of choice for “back
of the envelop” calculations required on exams with no calculators. This method
does tend to obscure important structural patterns since it focuses on scalar-valued
entries rather than vector-valued data.
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EXAMPLE 5.3.6
Let’s define the matrices

X = S21(−3) =
[

1 0
−3 1

]
and A =

[
2 1 2
6 2 4

]
.

Now let’s use dot products to find the output

B =
[
b11 b12 b13
b21 b22 b23

]
=
[

1 0
−3 1

] [
2 1 2
6 2 4

]
= XA.

To do this calculation, we generate B entry by entry using the dot product. Using
the our definition 5.3, we see:

b11 = X(1, : ) · A( : , 1) =
[
1 0

]
·
[
2
6

]
= (1) (2) + (0) (6) = 2,

b12 = X(1, : ) · A( : , 2) =
[
1 0

]
·
[
1
2

]
= (1) (1) + (0) (2) = 1,

b13 = X(1, : ) · A( : , 3) =
[
1 0

]
·
[
2
4

]
= (1) (2) + (0) (4) = 1,

b21 = X(2, : ) · A( : , 1) =
[
−3 1

]
·
[
2
6

]
= (−3) (2) + (1) (6) = 0,

b22 = X(2, : ) · A( : , 2) =
[
−3 1

]
·
[
1
2

]
= (−3) (1) + (1) (2) = −1,

b23 = X(2, : ) · A( : , 3) =
[
−3 1

]
·
[
2
4

]
= (−3) (2) + (1) (4) = −2.

Combining these size individual scalar-valued calculations together, we form the
matrix B with [

1 0
−3 1

] [
2 1 2
6 2 4

]
=
[
2 1 2
0 −1 −2

]
A fun extension to this exercise is to redo these calculations using the other two
methods for doing matrix-matrix multiplication. Specifically, confirm this example
using linear combinations of both the columns and rows. What patterns do you
notice? Of course the output of each method should be identical. However, does
that mean that the techniques themselves are the same? Expand on this idea.

c© Jeffrey A. Anderson 10 of 16

http://www.appliedlinearalgebra.com


www.appliedlinearalgebra.com Version: 03/29/2022 at 4:47pm

EXAMPLE 5.3.7
Let’s confirm that the equation

AX =

3 0 −2
2 −1 2
0 2 1

2 1 0
1 3 −1
3 1 0

 =

0 1 0
9 1 1
5 7 −2

 = B

Using definition 5.3 of matrix-matrix multiplication via dot products, we have:

b11 = A(1, : ) · X( : , 1) =
[
3 0 −2

]
·

2
1
3

 = (3) (2) + (0) (1) + (−2) (3) = 0,

b21 = A(2, : ) · X( : , 1) =
[
2 −1 2

]
·

2
1
3

 = (2) (2) + (−1) (1) + (2) (3) = 9,

b31 = A(3, : ) · X( : , 1) =
[
0 2 1

]
·

2
1
3

 = (0) (2) + (2) (1) + (1) (3) = 5,

b12 = A(1, : ) · X( : , 2) =
[
3 0 −2

]
·

1
3
1

 = (3) (1) + (0) (3) + (−2) (1) = 1,

b22 = A(2, : ) · X( : , 2) =
[
2 −1 2

]
·

1
3
1

 = (2) (1) + (−1) (3) + (2) (1) = 1,

b32 = A(3, : ) · X( : , 2) =
[
0 2 1

]
·

1
3
1

 = (0) (1) + (2) (3) + (1) (1) = 7,

b13 = A(1, : ) · X( : , 3) =
[
3 0 −2

]
·

 0
−1

0

 = (3) (0) + (0) (−1) + (−2) (0) = 0,

b23 = A(2, : ) · X( : , 3) =
[
2 −1 2

]
·

 0
−1

0

 = (3) (0) + (−1) (−1) + (2) (0) = 1,

b33 = A(3, : ) · X( : , 3) =
[
0 2 1

]
·

 0
−1

0

 = (0) (0) + (2) (−1) + (1) (0) = −2.

Just as before, go back and redo this example using the other two definitions of
matrix-matrix multiplication via linear combinations of the column vectors and
row vectors. What do you notice? How is the scalar version using dot products
different from the column-vector or row-vector versions?
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We are now ready to explore our fourth and final definition for computing
matrix-matrix products. In this case, we use a sum of outer product operations
between the column vectors of the left factor and the row vectors of the right vec-
tor. As we do so, we form the output via a sum of rank one updates.

Definition 5.4

Matrix-matrix multiplication via outer products

Let A ∈ Rm×p and X ∈ Rp×n. The product B = A · X is the m × n
matrix whose value is given by

B = A( : , 1)X(1, : ) +A( : , 2)X(2, : ) + · · ·+A( : , p)X(p, : )

Notice that we are building a version of matrix-matrix multiplication that
relies on a sequence of outer products.

Notice that there are exactly p summands that form the output matrix

B =
p∑

k=1
A( : , k)X(k, : )

The kth summand in this sequence is an m × n matrix which results from taking
the outer product between the kth column of A and the kth row of X. In other
words, we form the output matrix by summing a sequence of rank-1 matrices.

EXAMPLE 5.3.8
Let’s return to the our example 5.3.6 where we calculate

XA =
[

1 0
−3 1

] [
2 1 2
6 2 4

]
=
[
2 1 2
0 −1 −2

]
= B.

In this case, let’s redo our work using the outer product definition 5.4 for matrix-
matrix multiplication. To this end, we notice

XA = X( : , 1)A(1, : ) +X( : , 2)A(2, : )

=
[

1
−3

] [
2 1 2

]
+
[
0
1

] [
6 2 4

]

=
[

2 1 2
−6 −3 −6

]
+
[
0 0 0
6 2 4

]

=
[
2 1 2
0 −1 −2

]

In this case, we achieve the same output using a different method. The outer
product version of matrix-matrix multiplication focuses on building the output ma-
trix using matrix-sized pieces of data. Each individual summand comes from a rank
one outer product operation.
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EXAMPLE 5.3.9
To cement our understanding, let’s redo example 5.3.7 using the outer product
version of matrix-matrix multiplication. Recall that in this example, we have

AX =

3 0 −2
2 −1 2
0 2 1

2 1 0
1 3 −1
3 1 0

 =

0 1 0
9 1 1
5 7 −2

 = B.

Using the outer product definition 5.4, we notice

AX = A( : , 1)X(1, : ) +A( : , 2)X(2, : ) +A( : , 3)X(3, : )

=

3
2
0

 [2 1 0
]

+

 0
−1

2

 [1 3 −1
]

+

−2
2
1

 [3 1 0
]

=

6 3 0
4 2 0
0 0 0

+

 0 0 0
−1 −3 1

2 6 −2

+

−6 −2 0
6 2 0
3 1 0



=

0 1 0
9 1 1
5 7 −2



For the single operation of matrix-matrix multiplication, we have four different
ways to calculate the desired output. All the techniques lead to identical entry-by-
entry output values but the way we do the calculations differ. By studying multiple
ways to get the same result, we increase our power to engage in flexible thinking.

As we continue to dive deeper into linear algebra, we use each of the four different
ways of thinking about matrix-matrix multiplication strategically depending on the
context and our desires. One of the major themes of solving any of the fundamental
problems in linear algebra is to use matrices to do algebraic work. In other words,
we start our explorations by generating a modeling matrix A from some real-world
context that matters in our life. We spend countless hours transforming that context
into the form of one of the fundamental problems. It is often the case, however,
that the way we state the problem comes from the way we generate the model and
leads to very complex algebraic equations that are impossible to solve by hand.

Using the techniques of applied linear algebra, we leverage modern-day compu-
tational power and manipulate our modeling problem using matrix-matrix multi-
plication with a very special set of matrices. Under the correct conditions and with
a lot of thought, we translate our original problem into some equivalent problem
whose solution is quite easy to calculate on a computer. The resulting solution then
gives us insights into our larger problem.

The entire approach to problem solving depends heavily on leveraging the prop-
erties of matrix-matrix multiplication. In this section, we discover the theoretical
definitions of this operation. The next challenge is to learn how to implement these
definitions as computer code. The state-of-the-art is to optimize such code to be as
fast and accurate as possible to enable processing of very large matrices. That is a
challenge you might take up in your future career if you are so inclined.
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We’ll end this section by exploring the algebraic properties of matrix-matrix
multiplication. For each property, we might generate at least four separate proofs,
one for each definition of matrix-matrix multiplication from this section. In this
manuscript, we’ll provide four proofs of four separate properties, each proof relying
on a unique version of matrix-matrix multiplication. We challenge the reader to
create equivalent proofs for themselves.

Theorem 1

Algebraic Properties of Matrix-Matrix Multiplication

Let A,B, and C be matrices of the appropriate sizes so that all of the
following operations can be performed. Let α ∈ R be any scalar. Then, all
of the following are algebraic properties of matrix-matrix multiplication:

i. Associativity:
(
AB

)
C = A

(
BC

)
ii. Left distributivity: A (B ± C) = AB ±AC

iii. Right distributivity: (A±B)C = AC ±BC

iv. Identity Matrix: AI = A = I A

v. Zero Matrix: A 0 = 0 = 0A

vi. Transpose: (AB)T = BTAT

vii. Scalar Multiplication: (αA)B = A (αB) = α(AB)
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Lesson 11: Matrix-Matrix Multiplication Problem Set

1. Let A ∈ R4×4. Execute each of the following operations by multiplying A
on the right by the appropriate matrix X. In each case, explicitly write the
matrix X and show all steps you used to calculate the matrix vector product
A ·X.

Double column 1A.

Interchanges columns 1 and 4B.

Add 2 times column 2 to column 3C.

Delete column 4 (so that the column dimension is reduced by 1)D.

2. Let X ∈ R4×4. Execute each of the following operations by multiplying X on
the left by the appropriate matrix A. In each case, explicitly write the matrix
A and show all steps you used to calculate the matrix vector product A ·X.

Halve row 3.A.

Add row 2 to row 4.B.

Subtract row 2 from each of the other rowsC.

Subtract row 1 from each of the other rows.D.

Add row 3 to row 1 and also Add row 1 to row 3.E.

Swap rows 1 and 2 and rows 3 and 4.F.

Delete rows 1 and 3 (so that the row dimension is reduced by 2).G.

3. Begin with a modeling matrix A ∈ R6×5. Use matrix multiplication to per-
mute the columns of matrix A using any permutation you can imagine. For
example, you might send column 1 to column 3, column 3 to column 4, column
4 to column 2, column 2 to column 5 and column 5 to column 1. To visualize
this permutation, we can use Cauchy’s two-line notation for a permutation
given as: (

1 2 3 4 5
3 5 4 2 1

)
.

In this notation, the first line represents the starting indices for each column
and the second line represents where the columns end up after the product.
Accomplish this permutation with a single matrix-matrix product. Also ac-
complish the same output with a sequence of matrix multiplications using
only transposition matrices. What pattern(s) do you notice?
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4. Begin with a modeling matrix A ∈ R6×5. Use matrix multiplication to per-
mute the rows of matrix A using any permutation you can imagine. Suppose
you send row 1 to row 2, row 2 to row 3, and row 3 back to row 1. Suppose
also you send row 4 to row 6, row 6 to row 5, and row 5 back to row 4.
To visualize this permutation, we can use Cauchy’s two-line notation for a
permutation given as: (

1 2 3 4 5 6
2 3 1 6 4 5

)
.

In this notation, the first line represents the starting indices for each row and
the second line represents where the rows end up after the product. Accom-
plish this permutation with a single matrix-matrix product. Also accomplish
the same output with a sequence of matrix multiplications using only trans-
position matrices. What pattern(s) do you notice?

5. In this section, we saw the matrix-matrix multiplication formula for the dot
product given by x · y = yT x. In this exercise, we generalize this formula.
Specifically, let A ∈ Rn×n and suppose x,y ∈ Rn×1. For each of the formula
found below, create as many different proofs as you can. Also, translate each
of these formulas into simple, intuitive (nontechnical) language. Why are
these significant? When might you use this information?

y · x = xT yA.

x · y = xT yB.

y · x = yT xC.

(Ax) · y = x · (AT y)D.

x · (Ay) = (AT x) · yE.

6. Take a look at our Theorem statement for the Algebraic Properties of Matrix-
Matrix Multiplication. For each item i. - vii. in the theorem statement,
come up with as many unique ways to prove that item to be true as you
can. For example, you might use the four different definitions of matrix-
matrix multiplication to prove each individual point. Or, if that seems too
daunting, alternate between which definition you use to prove each item. The
point here is to show yourself that you can use the various versions of matrix-
matrix multiplication to substantiate the algebraic relationships stated in this
theorem. Each approach depends on different algebraic facts but the end
results so that you establish the desired results using unique approaches.
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