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Matrix-Vector Multiplication

The phrase matrix-vector multiplication is shorthand for one of two different oper-
ations including:

Matrix-column-vector multiplication: Multiply a matrix A ∈ Rm×n on the
right by a column vector x ∈ Rn×1 to produce column vector

Ax = b ∈ Rm×1.

Row-vector-matrix multiplication: Multiply a matrix A ∈ Rm×n on the left
by a row vector xT where x ∈ Rm×1 to produce row vector

xT A = b ∈ R1×n.

We think about generating our desired output vector b via two different paradigms:

Vectorize the data: generate the output to our matrix-vector product as a
linear combination of vectors and chunk the arithmetic operations in terms of
vector-valued output.

Scalarize the data: generate the output to our matrix-vector product as a
set of individual scalars by focusing on arithmetic operations that produce
scalar-valued output.

In other words, we develop two different approaches for each of our two operation.
This yields a total of four different definitions of matrix-vector multiplication. Us-
ing the definitions, we explore a number of algebraic properties for matrix-vector
multiplication. We also explore the connections between matrix-column-vector and
row-vector-matrix products that result from using the transpose operator.
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We might think of each matrix-column-vector multiplication as a function from
the the set of column vectors in Rn×1 to the set of column vectors in Rm×1. “Given”
any matrix A ∈ Rm×n, we can define a function

f(x) = Ax

where f : Rn×1 → Rm×1. Notice that the domain of this function is Rn and the
codomain is Rm.

Definition 4.1

Matrix-column-vector multiplication via linear combinations

Let A ∈ Rm×n be a matrix and x ∈ Rn×1. Then the linear combination
version of the matrix-column-vector product Ax = b ∈ Rm×1 is given by

Ax = x1A( : , 1) + x2A( : , 2) + · · ·+ xnA( : , n) =
n∑

k=1
xk A( : , k) = b.

This version of the matrix-column-vector product Ax creates a linear combina-
tion of the columns of A with scalar weights defined by the coefficients stored in the
entries of vector x. Let’s take a look at a toy example to explore how this operation
works in practice.

EXAMPLE 4.1.1
Let’s use the linear combination version of matrix-column-vector multiplication to
find b = Ax where

A =


−3 4 −3
−1 7 6

0 1 2
2 −5 −2

 and x =

 5
2
−2


This version of matrix-column-vector multiplication dictates that we calculate the
output “all at once.” In other words, we’re not thinking of the vector b in terms of
it’s individual entries. Instead, we’re looking at b as a data structure whose value
comes from a sequence arithmetic operations on vectors (rather than on scalars).
For this example, the matrix A has m = 4 rows and n = 3 columns. Using our
definition of matrix-column-vector multiplication via linear combinations, we see

b = Ax = x1 A( : , 1) + x2 A( : , 2) + x3 A( : , 3)

= (5)


−3
−1

0
2

+ (2)


4
7
1
−5

+ (−2)


−3

6
2
−2

 =


−1
−3
−2

4
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In your early stages of exploring this definition, I encourage you to explicitly
write out the linear combination before you calculate the values for each individual
entry of the output. This habit helps you develop a visceral sense of creating the
output vector b as a linear combination of the columns of the matrix A scaled by
the entries in the vector x. Later in our studies, we will think a lot about how to
transform a modeling problem into an equivalent problem that is easier to solve by
using as sequence of strategic steps. During those processes, it may be very helpful
to view each matrix-vector product from the standpoint of linear combinations.

One of the major themes of our approach to learning linear algebra is to develop
multiple representations for every mathematics idea that we study. We have just
seen how to vectorize our data and use linear combinations to achieve matrix-
column-vector multiplication. However, we can approach this operations from a
scalar perspective. Instead of thinking about the output as a vector, we can slice
the output into individual scalar entries and calculate each of those using different
tools from our toolbox.

Definition 4.2

Matrix-column-vector multiplication via dot products

Let A ∈ Rm×n and x ∈ Rn×1. We can define an equivalent method to find
the matrix-column-vector product Ax = b ∈ Rm×1 using dot products.
The ith entry of the product b = Ax can be calculated by a dot product
between the ith row of A and the vector x:

bi = entry(i,1)(Ax ) = (A(i, :))T · x =
n∑

k=1
aikxk

for row index i ∈ {1, 2, ....,m}.

With this version of the definition, we view the product Ax as the set of individ-
ual dot products of the rows of A with the column vector x. While it is tempting
to see this second definition as “easier” since there is less to remember, I highly
suggest that you use this only to check your work. The column partition version
of Matrix-Vector multiplication is a much more powerful way to think about this
problem. The row version is helpful only when you are actually trying to calculate
by hand (and a select few other applications).

EXAMPLE 4.1.2
Let’s use the dot product version of matrix-column-vector multiplication to find
b = Ax where

A =


−3 4 −3
−1 7 6

0 1 2
2 −5 −2

 and x =

 5
2
−2


This version of matrix-column-vector multiplication dictates that we calculate the
output via individual entires. Said a different way, we don’t visualize b as a vector
but instead as a list of m separate individual entries stacked on top of each other.
The output is determined by a sequence of scalar arithmetic operations. The matrix
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A is identical to Example 4.1.1 with m = 4 rows and n = 3 columns. Using our
definition of matrix-column-vector multiplication via dot products combinations,
we see

b1 = [A(1, : ) ]T · x =

−3
4
−3

 ·
 5

2
−2

 = (−3) (5) + (4) (2) + (−3) (−2) = −1,

b2 = [A(2, : ) ]T · x =

−1
7
6

 ·
 5

2
−2

 = (−1) (5) + (7) (2) + (6) (−2) = −3,

b3 = [A(3, : ) ]T · x =

0
1
2

 ·
 5

2
−2

 = (0) (5) + (1) (2) + (2) (−2) = −2,

b4 = [A(4, : ) ]T · x =

 2
−5
−2

 ·
 5

2
−2

 = (2) (5) + (−5) (2) + (2) (−2) = 4.

Combining the four individual scalar-valued calculations together, we form the ma-
trix b with

b =


b1
b2
b3
b4

 =


−1
−3
−2

4


We notice that this is the same vector we found in Example 4.1.1. We expect this
result since two different procedures to calculate the same value should produce
identical outputs.

We now have two different ways to think about matrix-column-vector multipli-
cation. Both techniques result in the same output and yet the approach differs.
Let’s use these definition to explore the algebraic properties of this operation.
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Theorem 1

Algebraic properties of matrix-column-vector multiplication

Let A ∈ Rm×n, let x,y ∈ Rm and let α, β ∈ R. Then, we have the
following:

i. Distributivity: A(x + y) = Ax +Ay

ii. Scalar Multiplication: A(c1x) = c1(Ax)

iii. Linearity: A(αx + βy) = αAx + βAy

The theorem statement above actually encodes three different conditional state-
ments in the form P ⇒ Q which are written as follows:

Distributivity: IfA ∈ Rm×n and x,y ∈ Rn︸ ︷︷ ︸
P

, then A(x + y) = Ax +Ay︸ ︷︷ ︸
Q

Scalar Mult: IfA ∈ Rm×n,x ∈ Rn, and α ∈ R︸ ︷︷ ︸
P

, then A(αx) = αAx︸ ︷︷ ︸
Q

Linearity: IfA ∈ Rm×n,x,y ∈ Rn, and α, β ∈ R︸ ︷︷ ︸
P

, then A(αx + βy) = αAx + βAy︸ ︷︷ ︸
Q

For each of these statements, we might develop a formal mathematical proof
using either the linear combination or dot product of matrix-column-vector multi-
plication. In other words, there are at least six different proofs to be explored and
discovered. Later in this chapter, we’ll see even more ways to prove these properties.
Remember that the purpose of all the investigations we do is to help push keep you
in the sweet spot. As long as you feel challenged, keep up your effort. The moment
that this starts to feel easy, you’re ready to move on.
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Let’s begin with a direct proof of distributivity using the definition of matrix-
column-vector multiplication via linear combinations.

Proof. Assume that A ∈ Rm×n and x,y ∈ Rn. Consider

A(x + y) =
[
A( : , 1) A( : , 2) · · · A( : , n)

]


x1 + y1
x2 + y2

...
xn + yn




= (x1 + y1)A( : , 1) + (x2 + y2)A( : , 2) + · · ·+ (xn + yn)A( : , n)

= (x1 A( : , 1) + x2 A( : , 2) + · · ·+ xn A( : , n))

+ (y1 A( : , 1) + y2 A( : , 2) + · · ·+ yn A( : , n))

= [ A( : , 1) A( : , 2) · · · A( : , n) ]

x1
x2
...

xn

+ [ A( : , 1) A( : , 2) · · · A( : , n) ]

y1
y2
...

yn


= Ax +Ay.

Let’s continue with a direct proof of the scalar multiplication property using the
dot product version of our definition of matrix-column-vector multiplication.

Proof. Suppose that A ∈ Rm×n, x ∈ Rn, and α ∈ R. For any i = 1, 2, ...,m, we
want to show that entry(i,1)(A(αx)) = entry(i,1)(α(Ax)). To this end, consider

entry(i,1)(A(αx)) = (A(i, :))T · (αx)


ai1
ai2
...
ain

 ·

αx1
αx2
...

αxn


= ai1 (αx1) + ai2 (αx2) + · · ·+ ain (αxn)

= α (ai1 x1 + ai2 x2 + · · ·+ ain xn)

= α
(

(A(i, :))T · x
)

= entry(i,1)(α(Ax)).

This is exactly what we wanted to show.
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Definition 4.3

Row-vector-matrix multiplication via linear combinations

Let A ∈ Rm×n be a matrix and x ∈ Rm×1. Then the linear-combination
version of the row-vector-matrix product xT A = b ∈ R1×n is given by
the linear combination

xT A = x1A(1, : ) + x2A(2, : ) + · · ·+ xmA(m, : ) =
m∑

i=1
xi A(i, : ) = b.

This version of the matrix-column-vector product Ax creates a linear combina-
tion of the columns of A with scalar weights defined by the coefficients stored in the
entries of vector x. Let’s take a look at a toy example to explore how this operation
works in practice.

EXAMPLE 4.1.3
Let’s use the linear combination version of row-vector-matrix multiplication to find
b = xT A where

A =


−3 4 −3
−1 7 6

0 1 2
2 −5 −2

 and x =


2
−1

5
3


In this version of row-vector-matrix multiplication, we calculate the output using
vector-valued arithmetic. Specifically, we don’t think of the output vector b in
terms of individual entries but instead generate this output data using a sequence
arithmetic operations on row vectors. For this example, since matrix A has m = 4
rows and n = 3 columns, we see

b = xT A = x1 A(1, : ) + x2 A(2, : ) + x3 A(3, : ) + x4 A(4, : )

= ( 2 )
[
−3 +4 −3

]
+ (−1)

[
−1 +7 +6

]
+ ( 5 )

[
+0 +1 +2

]
+ ( 3 )

[
+2 −5 −2

]
=
[
+1 −9 −8

]
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Definition 4.4

Row-vector-matrix multiplication via dot products

Let A ∈ Rm×n and x ∈ Rm×1. We the define row-vector-matrix product
xT A = b ∈ R1×n via dot products using an entry-by-entry approach.
Specifically, the kth entry of the product b = xT A can be calculated by
a dot product between the kth column of A and the vector x:

bk = entry(1,k)( xT A ) = x · (A(:, k )) =
m∑

i=1
aikxk

for column index k ∈ {1, 2, ...., n}.

EXAMPLE 4.1.4
Let’s use our definition of row-vector-matrix multiplication via dot products to find
b = xT A where

A =


−3 4 −3
−1 7 6

0 1 2
2 −5 −2

 and x =


2
−1

5
3


In this case, we’ll generate b entry-by-entry by using the dot product operation.
The matrix A is identical to Example 4.1.1 with m = 4 rows and n = 3 columns.
Using our definition, we see

b1 = x · A( : , 1) =


2
−1

5
3

 ·

−3
−1

0
2

 = (2) (−3) + (−1) (−1) + (5) (0) + (3) (2) = 1,

b2 = x · A( : , 2) =


2
−1

5
3

 ·


4
7
1
−5

 = (2) (4) + (−1) (7) + (5) (1) + (3) (−5) = −9,

b3 = x · A( : , 3) =


2
−1

5
3

 ·

−3

6
2
−2

 = (2) (−3) + (−1) (6) + (5) (2) + (3) (−2) = −8.

Placing each of these into the appropriate column, we form the output vector
b =

[
b1 b2 b3

]
=
[
1 −9 −8

]
This is the same output we found in Example 4.1.3 verifying that the two differ-
ent procedures to calculate the row-vector-matrix multiplication result in identical
outputs.
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Compare and contrast our two definitions for both matrix-column-vector mul-
tiplication and row-vector-matrix multiplication. Notice that we’ve developed to
different approaches for both operations that yield the same result but do so via
different underlying approaches. Let’s develop algebraic properties for row-vector-
matrix multiplication and use our definitions to explore.

Theorem 2

Algebraic properties of row-vector-matrix multiplication

Let A ∈ Rm×n, let x,y ∈ Rm×1 and let α, β ∈ R. Then, each of the
following laws holds true:

i. Distributivity: (x + y)T A = xT A+ yT A

ii. Scalar Multiplication: (αx)TA = α(xT A)

iii. Linearity: (αx + βy)T A = αxT A+ βyT A

Once again, there are actually three distinct propositions encoded in this statement.
For each of those propositions, we might generate a proof based on either the dot
product or linear combination definition for row-vector-matrix multiplication. This
yields a least six different proofs available for discovery. Since we’ve already seen
the basic structure of these proof in our work with Theorem 1, let’s develop an
alternate approach for proving these properties are true.

To do this, let’s make a conjecture. Specifically, perhaps we notice that the
properties are interrelated and make the following claims:

Conjecture 1: If distributivity and scalar mult.︸ ︷︷ ︸
P

, then linearity︸ ︷︷ ︸
Q

Conjecture 2: If linearity︸ ︷︷ ︸
P

, then distributivity and scalar mult.︸ ︷︷ ︸
Q

Let’s show that conjecture 1 is true.

Proof. Let A ∈ Rm×n, let x,y ∈ Rm×1 and let α, β ∈ R. Assume that properties i.
and ii. hold for any vectors and scalars. Now consider

(αx + βy)T A = ((αx) + (βy))T
A

= (αx)T A+ (βy)T A

= α (xT A) + β (yT A)

This is what we wanted to show.
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Next let’s show that conjecture 2 is true.

Proof. Let A ∈ Rm×n, let x,y ∈ Rm×1 and let α, β ∈ R. Assume that propery iii.
holds for all vectors and scalars. We’ll show that properties i. and ii. follow. To
this end, consider

(x + y)T A = (αx + βy)T
A where α = 1 = β

= α (xT A) + β (yT A)

= xT A+ yT A.

This establishes property i. follows from property iii. Let’s show property ii. must
also follow. Consider

(αx)TA = (αx + βy)T
A where β = 0

= α (xT A) + β (yT A)

= α (xT A).

These proofs show that if we establish linearity we get the other two properties
for free and vice versa. To end this exploration, let’s prove linearity based on the
linear combination definition of row-vector matrix multiplication.

Proof. Let A ∈ Rm×n, let x,y ∈ Rm×1 and let α, β ∈ R. Consider

(αx + βy)T A =
[
αx1 + βy1 αx2 + βy2 · · · αxm + βym

]

A(1, : )
A(2, : )

...
A(m, : )


= (αx1 + βy1)A(1, : ) + (αx2 + βy2)A(2, : ) + · · ·+ (αxm + βym)A(m, : )

= α(x1 A(1, : ) + x2 A(2, : ) + · · ·+ xm A(m, : ))

+ β(y1 A(1, : ) + y2 A(2, : ) + · · ·+ ym A(m, : ))

= α
[
x1 x2 · · · xm

]

A(1, : )
A(2, : )

...
A(m, : )

+ β
[
y1 y2 · · · ym

]

A(1, : )
A(2, : )

...
A(m, : )



= αxT A+ βyT A.

This is exactly what we wanted to show.
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Theorem 3

The Transpose of a Matrix-Vector Product

Let A ∈ Rm×n, let x ∈ Rn×1, and let y ∈ Rm×1. Then, each of the
following holds:

i. (Ax )T = xT AT

ii.
(

yT A
)T = AT y

As we’ve noted previously, formal theorem statements found in math textbooks
often present a number of statements in the form P ⇒ Q. A best practice for
building deep understanding of mathematics theorems is to identify every condi-
tional statement you can find in a particular theorem statement separately. Below
we do exactly that:

Proposition 1: IfA ∈ Rm×n and x ∈ Rn︸ ︷︷ ︸
P

, then (Ax )T = xT AT︸ ︷︷ ︸
Q

Proposition 2: IfA ∈ Rm×n and y ∈ Rm︸ ︷︷ ︸
P

, then (yT A)T = AT y︸ ︷︷ ︸
Q

In this work, let’s develop two different proofs for proposition 1. Our first proof relies
on the definition of matrix-column-vector multiplication via dot products while the
second proof leverages the definition of matrix-column-vector multiplication via
linear combinations. Since this is the last theorem of the section, we present the
general proofs without creating base-case examples.

Proof. Let A ∈ Rm×n and x ∈ Rn×1. Now define two different vectors

b = Ax and r = xT AT .

We want to prove that bT = r. In this proof, we establish this fact via an entry-by-
entry approach. In other words, we show that for k = 1, 2, ...,m, we have bk = rk.

To this end, recall that our definition of matrix-column-vector multiplication via
dot products gives us that

bk = entry(1,k)
(
bT
)

= entry(k,1) (b)

= entry(k,1) (Ax)

= (rowk(A))T · x

= (A(k, : ))T · x

=
n∑

j=1
akjxj
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In this summation, each individual term is the product between two scalars. By our
knowledge of algebra, we know that this product is commutative and we can switch
the order in which we execute the multiplication in each term. In other words, we
have

bk =
n∑

j=1
xjakj

= x · (A(k, : ))T

= x ·
(
AT ( : , k)

)
= entry(1,k)

(
xT AT

)
= rk

This is exactly what we wanted to show and we conclude that (Ax )T = xT AT .

Our first proof above is based on the entry-by-entry view of matrix-column-
vector multiplication. I like to say that one of the best ways to engage in deep
learning of mathematical concepts is to search for, practice, and develop multiple
representations of every mathematical idea we study. In this case, let’s explore
another proof from the vector perspective by using the linear combination version
of our definition.

Proof. Let A ∈ Rm×n and x ∈ Rn×1. Now define two different vectors

b = Ax and r = xT AT .

We want to prove that bT = r. In this proof, we establish this fact by relying on
vector operations. To this end, recall that our definition of matrix-column-vector
multiplication via dot products gives us that

bT = (Ax)T =
(

n∑
k=1

xk A( : , k)
)T

=
n∑

k=1
(xk A( : , k))T

=
n∑

k=1
xk (A( : , k))T

=
n∑

k=1
xk A

T (k, : )

= xTAT

This is exactly what we wanted to show and we conclude that (Ax )T = xT AT .
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Matrix-Vector Multiplication Problem Set

1. Let ei ∈ R4 be the ith elementary basis vector with 4 rows and 1 column, for
i ∈ {1, 2, 3, 4}. For example, e2 =

[
0 1 0 0

]T . Let
A =


1 0 −1 2
2 1 −3 4
0 2 −2 3
1 1 −4 −2

 .
A. Calculate the matrix-column-vector product Ae1, Ae2, Ae3 and Ae4.

For each product, use both the linear combination AND dot product
version of matrix-column-vector multiplication.

B. Make sense of the output you get from problem 1A above. What patterns
do you notice? Describe these patterns in abuelita language and explain
why this must be true.

C. Calculate the row-vector-matrix product eT
1 A, eT

2 A, eT
3 A, and eT

4 A For
each product, use both the linear combination AND dot product version
of row-vector-matrix multiplication.

D. Make sense of the output you get from problem 1C above. What patterns
do you notice? Compare and contrast this to your work on problems 1A
and 1B above? Describe these patterns in abuelita language.

E. Using results from part (A) through (D) above, create a vector x such
that Ax = A(:, 1)−A(:, 4).

2. Let A ∈ R4×5. Multiply A on the right by a column vector x ∈ R5 to achieve
each of the operations below. In each case, specifically state the entry-by-entry
definition of the column vector x used to accomplish these operations.

A. Select column 3
B. Triple column 5
C. Subtract column 2 from column 4
D. Scale column 1 by c = 1

3 and add this to column 3
E. Find scalar c such that the sum of c times column 4 plus column 1 has

a zero in the first entry.

3. Let A ∈ R4×5. Multiply A on the left by a row vector xT ∈ R1×4 to achieve
each of the operations below. In each case, specifically state the entry-by-entry
definition of the row vector x used to accomplish these operations.

A. Multiply row 3 by c = −4
B. Select row 2
C. Subtract row 2 from row 4
D. Scale row 2 by c = 5

2 and add this to row 3
E. Find scalar c such that the sum of c times row 1 plus row 4 has a zero

in the first entry.
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4. How many different proofs for theorems 1, 2, or 3 can you create? If needed,
create specific examples to help get insights into the general proofs. Adapt
your work on the specific cases to create general proofs. How is each proof
related to our various methods for performing matrix-vector multiplication?

5. Let C ∈ R4×4 be a diagonal matrix. Suppose that x ∈ R4×1. Consider the
quadratic form

q(x) = xT · C · x

A. Identify the domain and codomain of the function q(x)
B. Write a scalar-based algorithm to find the outputs of q(x) (hint: this

definition should be in terms of entries of x and entries of C)
C. If you know that cii ≥ 0 for all i ∈ [4], what can you say about the range

of q(x)?
D. If you know that cii ≤ 0 for all i ∈ [4], what can you say about the range

of q(x)?
E. Consider the so-called “Raleigh Quotient” function

R(x) = xT · C · x
xT · x .

What is the maximum value of R(x)? What is the minimum value of
R(x)? How are these optimum values related to the entries of C?
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