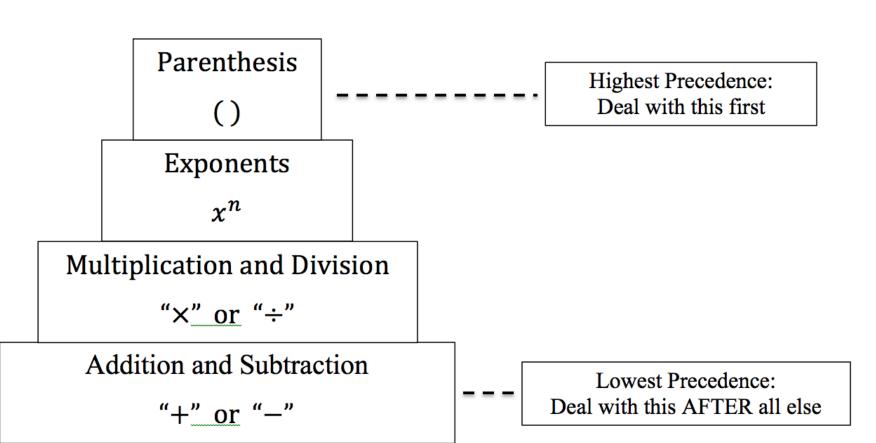
Applied Linear Algebra

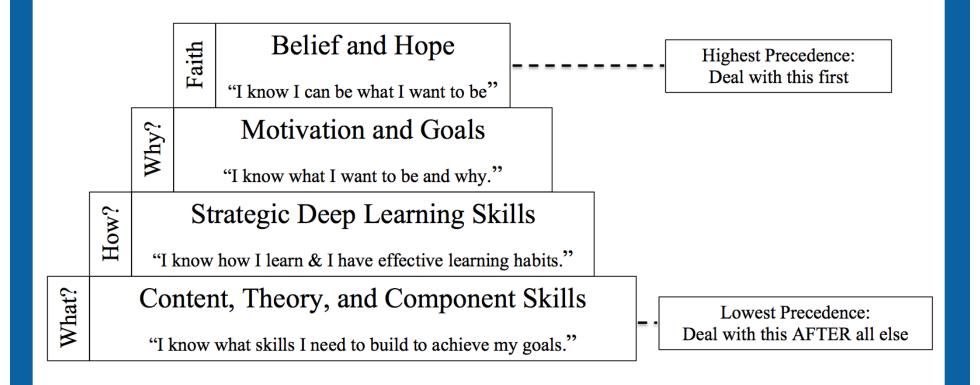
Electrify the Linear- Systems Problem

© Jeffrey Anderson, PhD Foothill College December 7, 2019

Getting to Know You


Please work on front of survey

Make the Eigenvalue Problem Resonate with our Students

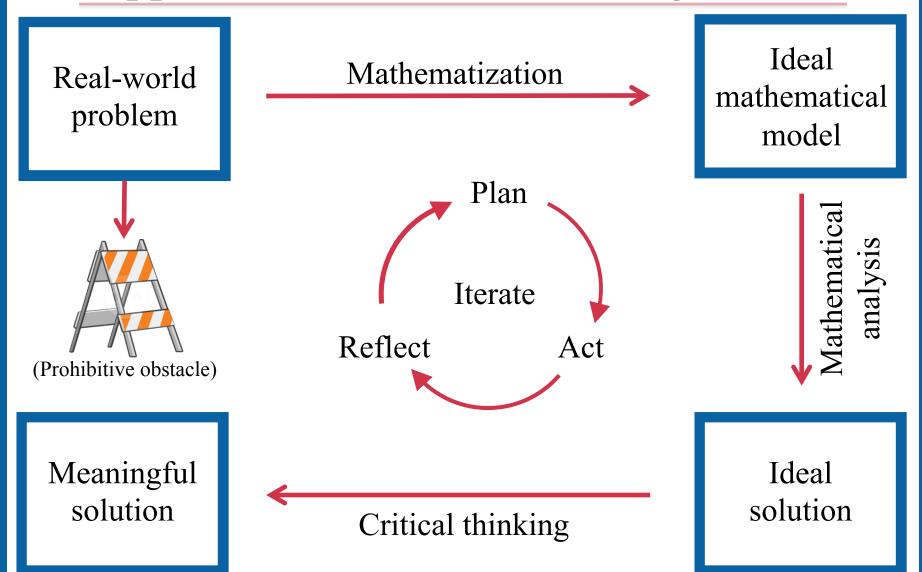

Saturday 12/9/2017: 2:30pm - 3:30pm

PART I: PARTICIPANT INFORMATION				
	Participant's Name:			
		First	Last	
	College:		City (where College is):	
1.	What is the title of the linear (For example, at Foothill Co		stitution? course is titled Math 2B: Linear Algebra)	
2.	How many sections of this c	ourse are offered at your	institution per year?	
	• •	for a total of 7 sections of	quarter, 2 sections in winter quarter and Math 2B per year. If you don't know	

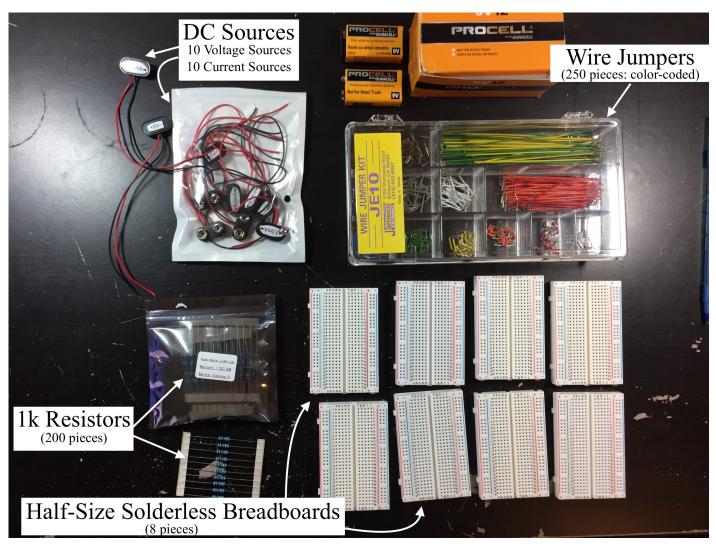
Operator Hierarchy

Learning Needs Hierarchy

Linear Algebra Serves Client Disciplines


DECLARED STEM MAJOR	#
BioChemistry or Chemistry	3
Cognitive Science	1
Computer Science	78
M.S. in Data Science	3
Engineering (Total)	48
Aerospace	1
Bio or BioMedical	2
Chemical	
Civil	6
Computer	3
Electrical	10
Environmental	2
Material Science	1
Mechanical	18
Unspecified	4
Math	16
Math (Applied)	7
Physics	7
Statistics	10
STEM	174
TOTAL STUDENTS	188

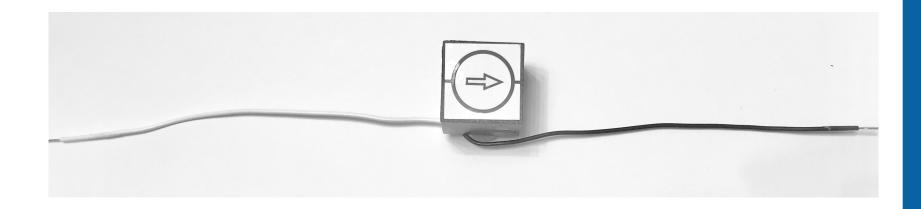
DECLARED NONSTEM MAJOR	#	
Business	2	
Cognitive Science	1	
Economics	5	
English Literature		
Psychology	1	
Public Policy	1	
Undeclared	3	
NONSTEM	14	
TOTAL STUDENTS	188	

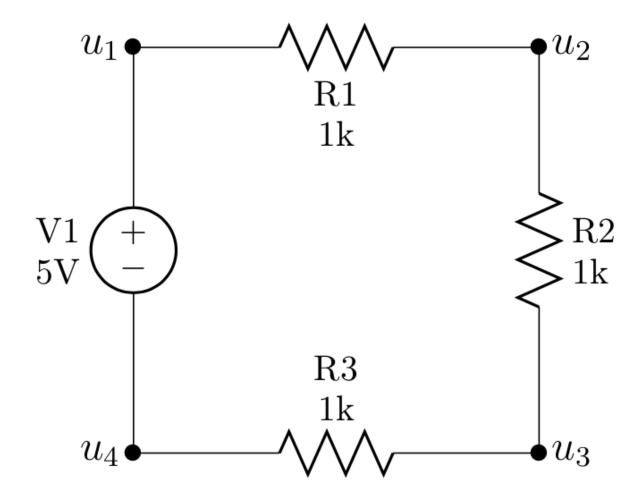

Linear Algebra Serves Client Disciplines

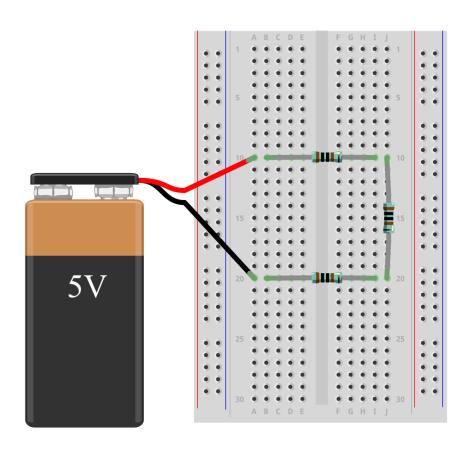
DECLARED STEM MAJOR	#	
BioChemistry or Chemistry		
Cognitive Science		
Computer Science		
M.S. in Data Science		
Engineering (Total)		
Aerospace		
Bio or BioMedical		
Chemical		
Civil	6	
Computer		
Electrical	10	
Environmental		
Material Science		
Mechanical	18	
Unspecified		
Math		
Math (Applied)	7	
Physics	7	
Statistics		
STEM	48	
TOTAL STUDENTS	188	

Applied Mathematical Modeling Process

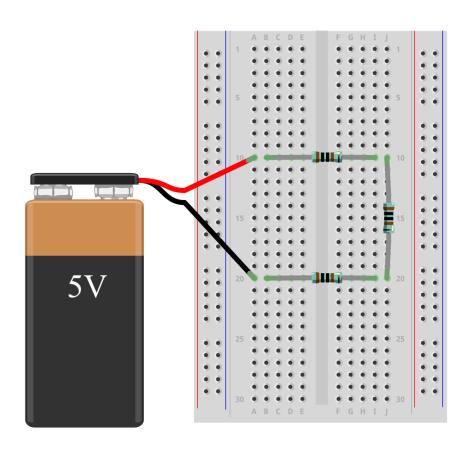
Electronics Lab Kit



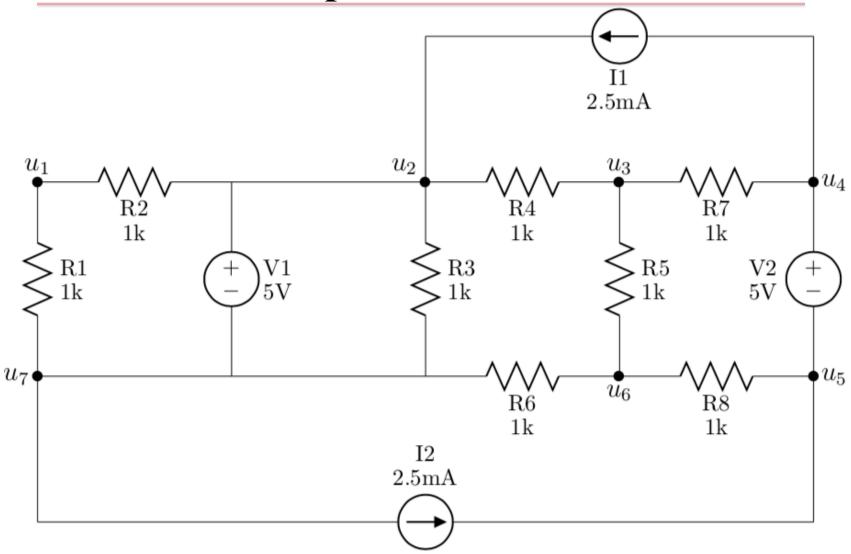

Electronics Lab Kit



Electronics Lab Kit



Let's build together



$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 5.0 \\ 0 \end{bmatrix}$$

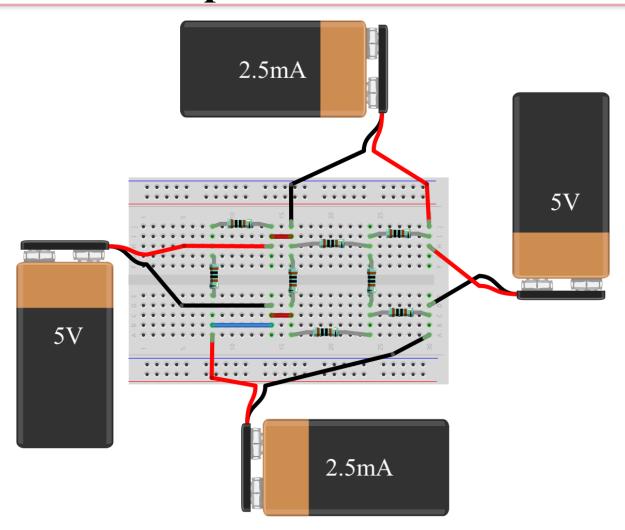

Node	Measured	Modeled
Variable	value (V)	value (V)
u_1	4.94	5.00
u_2	3.30	3.33
u_3	1.65	1.67
u_4	0.00	0.00

Table III: Model verification

LANA Example 2: Advanced Circuit

LANA Example 2: Advanced Circuit

CMC³ Example 2: Advanced Circuit

$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & 3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_3 \\ u_4 \\ u_6 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ -5 \end{bmatrix}$$

LANA Example 2: Advanced Circuit

Node	Measured	Modeled
Variable	value (V)	value (V)
u_1	2.497	2.50
u_2	4.98	5.00
u_3	3.728	3.75
u_4	4.95	5.00
u_5	0.003	0.00
u_6	1.241	1.25
u_7	0.000	0.00

Table III: Model verification

Six Major Problems

CALCLUS

1.
$$F(X) \in C^{(1)}(\mathbb{R})$$

2.
$$\frac{d}{dx} \Big[F(x) \Big] = f(x)$$

3.
$$\frac{d}{dx} \Big[F(x) \Big] = f(x)$$

4.
$$\nabla \left[F(\mathbf{x}) \right] = \mathbf{f}(\mathbf{x})$$

5.
$$\nabla \left[\mathbf{F}(\mathbf{x}) \right] = \mathbf{f}(\mathbf{x})$$

6.
$$F(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$

LINEAR ALGEBRA

$$A \in \mathbb{R}^{m \times n}$$

$$A\mathbf{x} = \mathbf{b}$$

$$A\mathbf{x} = \mathbf{b}$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} - \mathbf{b}\|_2$$

$$A \mathbf{x} = \lambda \mathbf{x}$$

$$A = U \Sigma V^*$$

Your Feedback

Please work on back of survey

PART II: CURRENT WORK LOAD						
8.	How interested are you in trying this eigenvalue modeling activity in your classroom?					
N	□ 1 Tot at all interested	□ 2	□ 3	4	□ 5	□ 6 Very interested
9.	What resources do you th	nink you would need to	implement this a	ctivity in your	classroom?	
10.	10. What was your favorite part of this presentation?					

Questions

Find or Contact me

Webpage:

appliedlinearalgebra.com

YouTube Channel:

AppliedLinearAlgebra.com