The Eigenvalue Problem

Make the Eigenvalue Problem Resonate with Our Students

© Jeffrey Anderson, PhD Michael McCusker, PhD Foothill College December 9, 2017

Getting to Know You

Please work on front of survey

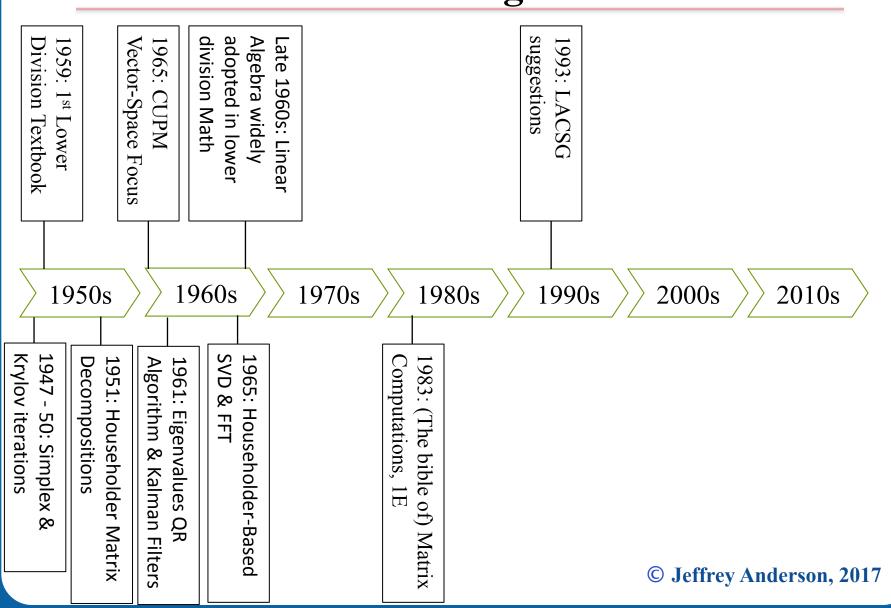
Make the Eigenvalue Problem Resonate with our Students

Saturday 12/9/2017: 2:30pm - 3:30pm

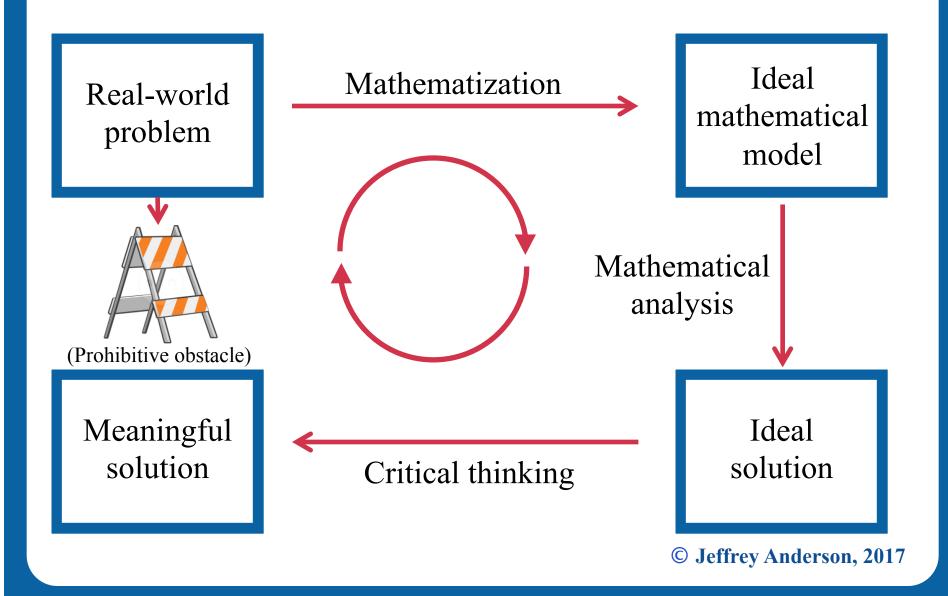
PART I: PARTICIPANT INFORMATION						
	Participant's Name:					
		First	Last			
	College:		City (where College is):			
1.	. What is the title of the linear algebra course at your institution? (For example, at Foothill College our Linear Algebra course is titled Math 2B: Linear Algebra)					
2.	How many sections of this co	ourse are offered at your i	nstitution per year?			
		or a total of 7 sections of	quarter, 2 sections in winter quarter and Math 2B per year. If you don't know			

The Promise(s) of Math Education

What promises does the US college education system make to our students (and their families)?


SPRING REGISTRATION IS NOW OPEN!
Invest in your future and career.

What is the purpose of math education?


Linear Algebra in Lower Division

DECLARED MAJOR	#
Business	2
Cognitive Science	1
Computer Science	30
Economics	3
Engineering (Total)	33
Bio	1
BioMedical	1
Civil	5
Electrical	6
Environmental	2
Material Science	1
Mechanical	15
Unspecified	2
English Literature	1
Math	6
Math (Applied)	2
Physics	2
Statistics	4
TOTAL	84

Themes of Linear Algebra Education

The Mathematical Modeling Process

Six Major Problems

CALCLUS

1.
$$F(X) \in C^{(1)}(\mathbb{R})$$

2.
$$\frac{d}{dx}\Big[F(x)\Big] = f(x)$$

3.
$$\frac{d}{dx} \left[F(x) \right] = f(x)$$

4.
$$\nabla \Big[F(\mathbf{x}) \Big] = \mathbf{f}(\mathbf{x})$$

5.
$$\nabla \left[\mathbf{F}(\mathbf{x}) \right] = \mathbf{f}(\mathbf{x})$$

6.
$$F(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$

LINEAR ALGEBRA

$$A \in \mathbb{R}^{m \times n}$$

$$A\mathbf{x} = \mathbf{b}$$

$$A\mathbf{x} = \mathbf{b}$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} - \mathbf{b}\|_2$$

$$A \mathbf{x} = \lambda \mathbf{x}$$

$$A = U \Sigma V^*$$

Linear Algebra Calendar Re-Envisioned

$$A \in \mathbb{R}^{m \times n}$$

$$A\mathbf{x} = \mathbf{b}$$

$$A\mathbf{x} = \mathbf{b}$$

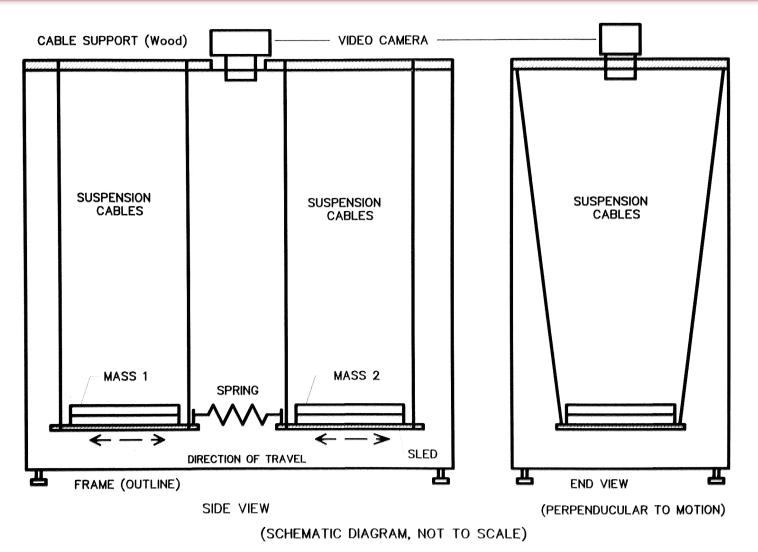
$$\min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} - \mathbf{b}\|_2$$

$$A\mathbf{x} = \lambda\mathbf{x}$$

Linear Algebra Tentative Calendar

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
Class 1 <u>Lesson 1:</u> Six Major Problems		Class 2 Lesson 2: Intro to Set Theory		Class 3 Lesson 3: Relations and Functions
Class 4 Lesson 4: Vector Modeling		Class 5 Lesson 5; Vector Arithmetic		Class 6 Lesson 6: Inner Products
Class 7 Lesson 7: Vector norms		Class 8 Lesson 8: Linear Independence		Class 9 Lesson 9: Matrix Modeling
Class 10 Lesson 10: Outer Products & Elementary Matrices		Class 11 Lesson 11: Matrix Arithmetic		Class 12 Lesson 12: Matrix-Vector Multiplication
Class 13 IN-CLASS EXAM 1 LESSONS 0 - 11		Class 14 Lesson 13: Four Versions of Matrix- Matrix Multiplication		Class 15 Lesson 14: Nonsingular Linear-Systems Problem
Class 16 Lesson 15: Matrix Inverses		Class 17 <u>Lesson 16:</u> Invertible Matrix Theorem		Class 18 <u>Lesson 17:</u> LU Factorization
Class 19 Lesson 18: General Linear-Systems Problem & Row Echelon Form		Class 20 Lesson 19: Solution Sets to General Linear Systems Problem		Class 21 <u>Lesson 20:</u> Determinants
Class 22 Lesson 21: Vector Spaces		Class 23 <u>Lesson 22:</u> Null & Column Space		Class 24 <u>Lesson 23:</u> Dimension and Rank
Class 25 Lesson 24: Least Squares		Class 26 Lesson 25: Orthogonal Sets		Class 27 Lesson 26: Orthogonal Projections
Class 28 IN-CLASS EXAM 2 LESSONS 12 – 25		Class 29 <u>Lesson 27:</u> Gram-Schmidt Process		Class 30 Lesson 28: QR Factorization
Class 31 <u>Lesson 29:</u> Intro Eigenvalues		Class 32 <u>Lesson 30:</u> Characteristic Eq.		Class 33 Lesson 31: Diagonalization
FINAL EXAM 8:00AM – 10AM	**Finals Week**	**Finals Week**	**Finals Week**	**Finals Week**

Linear Algebra Examples Re-Envisioned

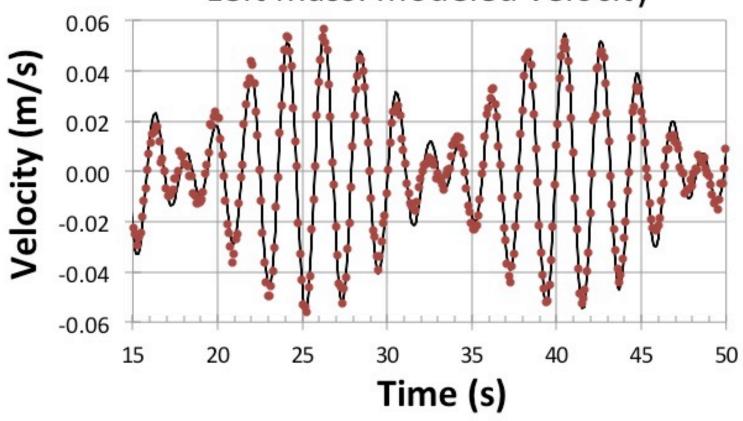

Linear Algebra Applications List

LESSONS 3: RELATIONS AND FUNCTIONS			
☐ Convert natural numbers into binary representations			
☐ Convert binary numbers into natural numbers			
 Apply the gray scale function for storing shades of gray in a computer 			
LESSONS 4: VECTORS AND MODELING			
☐ Use column vectors to create a vertex model of points in ℝ ²			
☐ Use column vectors to describe data from Hooke's law experiment			
☐ Use column vectors to capture position data for mass-spring chain			
☐ Use column vectors to model Ohm's law experiment			
☐ Apply Ohm's Law to describe relations between voltage and current in circuits			
LESSONS 5: VECTORS ARITHMETIC			
☐ Use scalar-vector multiplication and vector addition to model for Hooke's law			
☐ Use vector-vector addition to create the displacement vector for a mass-spring system with n masses and (n+1) springs			
where $n = 2, 3, 4, 5$			
LESSONS 6: INNER PRODUCTS			
 Use inner products to calculate the voltage across a circuit element given the node voltage potentials on either side of that circuit element 			
☐ Use inner products to write Kirchoff's current law for any node of an ideal circuit			
LESSONS 7: MATRIX MODELING			
☐ Create the incidence matrix for a given undirected graph			
☐ Create incidence matrix for a given directed graph			
☐ Identify and use the 2D wireframe model for given polygon			
□ Set up matrix model for a given mass-spring chain with n masses and (n+1) springs			
☐ Properly identify and apply matrix model for digital image			
LESSON 12: MATRIX-VECTOR MULTIPLICATION			
☐ Use matrix-vector multiplication to analyze mass-spring chains			
☐ Use matrix-vector multiplication to calculate voltage drops across ideal circuit elements			
☐ Use matrix-vector multiplication to state KCL at all nodes of a circuit			
☐ Use matrix-vector multiplication to state Ohm's Law for all resistors in a circuit			
A EGGONA 10 MONGRAGAM A DA DESA DA GAZGERA (GIDDONA EN A			

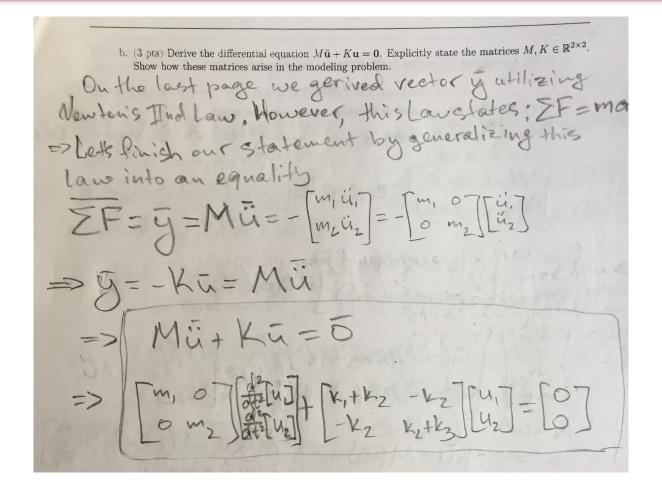
LESSON 12: NONSINGULAR LINEAR-SYSTEMS PROBLEM

- □ Set up and solve a nonsingular linear-systems problem for a given mass-spring chain with n masses and (n + 1) springs where n = 2, 3, 4, 5, 6
- ☐ Set up a linear systems problems using a Vandermonde matrix for polynomial modeling.

Eigenvalue Modeling


© Jeffrey Anderson, 2017

Data Collection


Model Validation

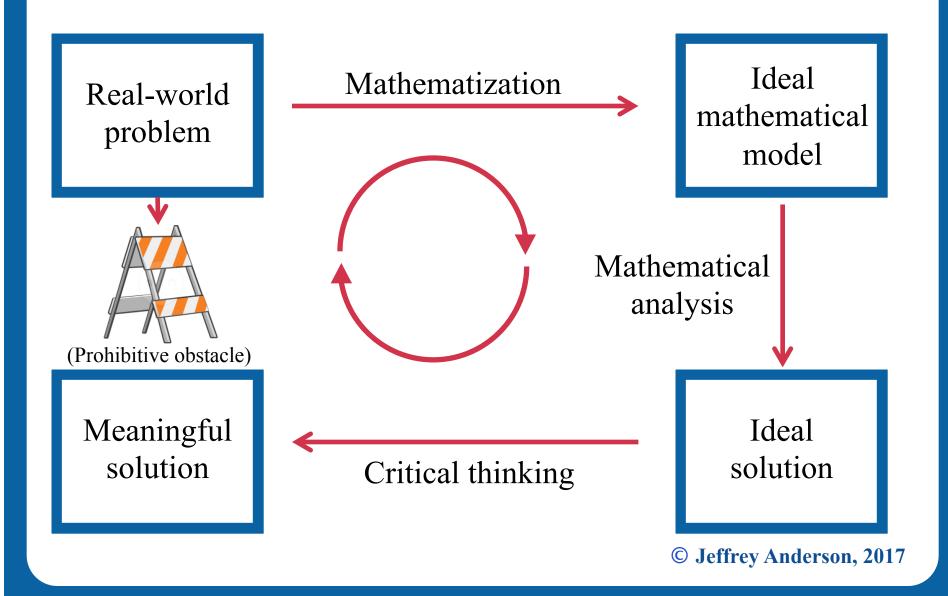
Left mass: measured velocity

-Left mass: modeled velocity

a. (4 pts) Generate vector models (using appropriate matrices and vectors) to define each of the following: u, e, F,, y, where these vectors represent the displacement vector, elongation vector, spring-force vector and net internal force vector respectively (as discussed in class). $U_{1} = x_{1}(t) - x_{1}(0) \iff \tilde{u}(t) = \begin{bmatrix} x_{1}(t) - x_{1}(0) \\ x_{2}(t) - x_{2}(0) \end{bmatrix}$ $e_{i} = u_{i-1} - u_{i-1} = \begin{bmatrix} u_{i}(t) + 0u_{2}(t) \\ -u_{i}(t) + u_{2}(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \vec{u}(t)$ $= \begin{bmatrix} 0 & u_{i}(t) + u_{2}(t) \\ 0 & u_{1}(t) - u_{2}(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \vec{u}(t)$ $F_{5} = K_{1}e_{1} \Leftrightarrow \hat{f}_{5} = \begin{bmatrix} K_{1} & 0 & 0 \\ 0 & K_{2} & 0 \end{bmatrix} \hat{e} = C\hat{e}$ $y_{1} = F_{5,1+1} - F_{5,1} \Leftrightarrow \hat{y} = \begin{bmatrix} F_{5,1} + F_{5,2} + 0 & F_{5,3} \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,2}$

a. (4 pts) Generate vector models (using appropriate matrices and vectors) to define each of the following: u, e, F,, y, where these vectors represent the displacement vector, elongation vector, spring-force vector and net internal force vector respectively (as discussed in class). $U_{1} = x_{1}(t) - x_{1}(0) \iff \tilde{u}(t) = \begin{bmatrix} x_{1}(t) - x_{1}(0) \\ x_{2}(t) - x_{2}(0) \end{bmatrix}$ $e_{i} = u_{i-1} - u_{i-1} = \begin{bmatrix} u_{i}(t) + 0u_{2}(t) \\ -u_{i}(t) + u_{2}(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \vec{u}(t)$ $= \begin{bmatrix} 0 & u_{i}(t) + u_{2}(t) \\ 0 & u_{1}(t) - u_{2}(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \vec{u}(t)$ $F_{5} = K_{1}e_{1} \Leftrightarrow \hat{f}_{5} = \begin{bmatrix} K_{1} & 0 & 0 \\ 0 & K_{2} & 0 \end{bmatrix} \hat{e} = C\hat{e}$ $y_{1} = F_{5,1+1} - F_{5,1} \Leftrightarrow \hat{y} = \begin{bmatrix} F_{5,1} + F_{5,2} + 0 & F_{5,3} \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,2} + F_{5,3} \end{bmatrix} = \begin{bmatrix} F_{1} & 1 & 0 \\ 0 & F_{5,1} + F_{5,2} + F_{5,2}$

c. (3 pts) Assume that the solution to this differential equation takes the form
$$u(t) = \sin(\omega t + \phi)v$$
for $v \in \mathbb{R}^2$. Derive the corresponding eigenvalue problem using this ansatz.


$$u(t) = \sin(\omega t + \phi)v$$

$$= \sin(\omega t + \phi) V$$

$$= \cos(\omega t + \phi)$$

$$= \begin{pmatrix} \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega^2 \end{pmatrix} - \begin{pmatrix} g_1 + k_2 \\ k_2 & m \end{pmatrix} - k_2 \\ k_2 & m \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{for sin}(\omega t + t t) = 0, \\ \text{not for all Values } \in \mathcal{E} \\ \text{not for all Values} \in \mathcal{E} \\ \text{when } k_2 & m \end{pmatrix} \begin{pmatrix} v_1 \\ k_2 \\ m \end{pmatrix} = \begin{pmatrix} k_2 \\ k_2 \\ m \end{pmatrix} \begin{pmatrix} v_1 \\ k_2 \\ m \end{pmatrix} \begin{pmatrix} v_2 \\ k_2 \\ m \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ m \end{pmatrix} \quad \text{hot for all Values} \in \mathcal{E} \\ \text{not for all Values} \in \mathcal{E} \\ \text{not for all Values} \in \mathcal{E} \\ \text{when } k_2 & m \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} k_2 \\ k_1 \end{pmatrix} \begin{pmatrix} v_2 \\ k_2 \end{pmatrix} \begin{pmatrix} v_1 \\ k_2 \end{pmatrix} \begin{pmatrix} v_2 \\ k_2 \end{pmatrix} \begin{pmatrix} v_2$$

The Mathematical Modeling Process

Questions

Your Feedback

Please work on back of survey

PART II: CURRENT WORK LOAD							
8. How interested are you in trying this eigenvalue modeling activity in your classroom?							
□ 1 Not at all interested	□ 2	□ 3	□ 4	□ 5	□ 6 Very interested		
9. What resources do you think you would need to implement this activity in your classroom?							
10. What were very favorite next of this presentation?							
10. What was your lavorite part of this presentation?							
10. What was your favorite part of this presentation?							