1. Find the Standard Form of a Quadratic Function

Consider the standard form for a quadratic function:

$$
f(x)=a x^{2}+b x+c
$$

Put each of functions below in standard form. In other words, specifically identify the values of a, b, and c.
1A. $f(x)=5 x^{2}-30 x+49$
1D. $j(w)=-5+3 w$

1B. $g(x)=-x^{2}+x-2$
1E. $\mathrm{k}(t)=t^{2}+4 t$
1C. $h(y)=4-y^{2}$
2. Explore the Standard Form of a Quadratic Function

Consider the standard form for a quadratic function:

$$
f(x)=a x^{2}+b x+c
$$

Using simple language, identify the role of each individual part of this function. Do your best to come up with descriptions for each of the following: x, x^{2}, a, b, and c.
3. Explore the anatomy of perfect-square trinomials

Expand each of the following perfect squares and write as a trinomial in the form

$$
x^{2}+b x+c
$$

Show your steps and specifically identify values for coefficients b and c. The first one is done for you.

3A. $(x-4)^{2}$
Let's consider the perfect square $(x-4)^{2}$:

$$
(x-4)^{2}=(x-4) \cdot(x-4)
$$

$$
=x \cdot(x-4)-4 \cdot(x-4)
$$

$$
=x^{2}-4 x-4 x+16
$$

$$
=x^{2}-8 x+16
$$

$$
b=-8, c=16
$$

3B. $(x+3)^{2}$

3C. $(x+11)^{2}$

3D. $\left(x-\frac{7}{2}\right)^{2}$
4. For each of the problems above, write the equivalent expressions in the form

$$
(x+d)^{2}=x^{2}+b x+c
$$

Then, specifically identify the values of the coefficients d, b and c. The first one is done for you.

4A. $(x-4)^{2}$
We notice from our work on problem 3A above that we have:

$$
(x-4)^{2}=x^{2}-8 x+16 \quad d=-4, b=-8, c=16
$$

4B. $(x+3)^{2}$

4C. $(x+11)^{2}$

4D. $\left(x-\frac{7}{2}\right)^{2}$
5. Look back on the work you finished in problem 4 above. What pattern do you notice? Specifically, how are the coefficients d, b and c related to each other? Make a conjecture about how this will work in general.
6. Your definition of a perfect square trinomial

We say that a perfect-square trinomial is a three-term expression that can be factored as a perfect square. We've seen this in our work in problems $1-5$. Below is a diagram that shows the connection:

Come up with your own description for a perfect-square trinomial. Use simple, abuelita language and make this as clear as you can for yourself.
7. LEARN TO COMPLETE THE SQUARE

Consider each incomplete expression below. Add a constant to make the expression a perfect-square trinomial. Then write the factored form of the expression as a perfect square. Identify each step you take in the solution. Please make sure you can explain to yourself why you are taking each step.

7A. $x^{2}+10 x$

7B. $t^{2}-7 t$

Name:
7C. $x^{2}-\frac{11}{2} x$

7D. $m^{2}+\frac{5}{4} m$

Name:
7E. $5 x^{2}-30 x$
8. GENERATE THE VERTEX FORM FOR A QUADRATIC FUNCTION

Use the method of completing the square (from problems $1-7$) to transform the quadratic function in standard form into an expression that contains a perfect square

8A. $f(x)=5 x^{2}+8 x+3$
8B. $f(x)=a x^{2}+b x+c$

