Name:

Math 48A, Lesson 10: Transformations of Functions (Part 1)

1. VERTICAL SHIFTS OF A QUADRATIC FUNCTION

1A. Consider the following quadratic functions

$$
f(x)=x^{2}, \quad g(x)=f(x)+6, \quad h(x)=f(x)-10
$$

Create a table of values and graph the resulting parabolas on these axes below.

Input	Output		
x	$f(x)$	$g(x)$	$h(x)$
-6			
-5			
-4			
-3			
-2			
-1			
0			
1			
2			
3			
4			
5			
6			

1B. Look back at both the graphs and the table of values from Problem 1A. What do you notice about the relationship between the output values of the functions

$$
f(x), \quad g(x)=f(x)+6, \quad \text { and } \quad h(x)=f(x)-10
$$

1C. Make a conjecture (a mathematical guess) about what happens in the following scenario:

Assume we have a function $f(x)$ and a positive constant $c>0$. Suppose we define functions

$$
g(x)=f(x)+c \quad \text { and } \quad h(x)=f(x)-c
$$

What is the relationship between $f(x), g(x)$, and $h(x)$?

2. VERTICAL SHIFTS OF AN ABSOLUTE VALUE FUNCTION

2A. Let's test your conjecture from Problem 1C on a different type of function. Consider the following absolute value functions
$f(x)=|x|$,
$g(x)=f(x)+3$,
$h(x)=f(x)-9$

For each function, specifically identify the value of positive constant $c>0$. Then, create a table of values and graph the resulting curves on these axes below

Input	Output		
x	$f(x)$	$g(x)$	$h(x)$
-6			
-5			
-4			
-3			
-2			
-1			
0			
1			
2			
3			
4			
5			
6			

2B. Look back at both the graphs and the table of values from Problem 2A. What do you notice about the relationship between the output values of the functions

$$
f(x), \quad g(x)=f(x)+3
$$

$$
h(x)=f(x)-10
$$

2C. Revise and update your conjecture (a mathematical guess) about what happens in the following scenario:

Assume we have a function $f(x)$ and a positive constant $c>0$. Suppose we define functions

$$
g(x)=f(x)+c \quad \text { and } \quad h(x)=f(x)-c
$$

What is the relationship between $f(x), g(x)$, and $h(x)$? Try to put this in both nerdy mathematical language and abuelita language

3. VERTICAL SHIFTS OF A ROOT FUNCTION

3A. Let's test the second draft of your conjecture from Problem 2C on a different type of function. Consider the following absolute value functions
$f(x)=\sqrt{x}$
$g(x)=f(x)+8$,
$h(x)=f(x)-6$

For each function, specifically identify the value of positive constant $c>0$. Then, create a table of values for $f(x)$. Without creating a table for $g(x)$ or $h(x)$, see if you can graph the resulting root function on the axes below.

Input	Output
x	$f(x)$
-1	
0	
1	
4	
9	
16	
25	
36	

Name:
3B. Now use a graphing calculator (like Desmos.com or a TI-Calculator) to graph the functions:
$f(x)=\sqrt{x} \quad$,
$g(x)=f(x)+8$,
$h(x)=f(x)-6$

How accurate was your guess in Problem 3A?
\qquad
3C. Take a look at the call out box below:

VERTICAL SHIFTS OF GRAPHS

Suppose $c>0$.

To graph $y=f(x)+c$, shift the graph of $y=f(x)$ upward c units.
To graph $y=f(x)-c$, shift the graph of $y=f(x)$ downward c units.

Translate this into abuelita language for yourself (simple non-technical language that describes what the math is saying so that your abuelita can understand). Really push yourself to make the description simple.

4. HORIZONTAL SHIFTS: SHIFT THE INPUT OF A FUNCTION

4A. Consider the following shifts of the input variable

Draw the effect of this shift on the real number line (x-axis) below:

Shifted values:
x-values:

What do you notice about the zero position in the shifted input $(x+3)$ versus the zero position in the original input x ?
\qquad
4B. Suppose that $c>0$. Make a conjecture about the effect of the following shift:

Draw the effect of this shift on the real number line (x-axis) below:

Shifted values:
x-values:

What does this shift do to the original input? In other words, What do you notice about the zero position in the shifted input $(x+c)$ versus the zero position in the original input x ?

4C. Consider the following shifts of the input variable

Draw the effect of this shift on the real number line (x-axis) below:

Shifted values:
x-values:

What do you notice about the zero position in the shifted input $(x-4)$ versus the zero position in the original input x ?

\qquad
4D. Suppose that $c>0$. Make a conjecture about the effect of the following shift:

Draw the effect of this shift on the real number line (x-axis) below:

Shifted values:
x-values:

What does this shift do to the original input? In other words, What do you notice about the zero position in the shifted input $(x-c)$ versus the zero position in the original input x ?

5. HORIZONTAL SHIFTS OF A QUADRATIC FUNCTION

1A. Consider the following quadratic functions

$$
f(x)=x^{2}, \quad g(x)=f(x+2), \quad h(x)=f(x-3)
$$

Create a table of values and graph the resulting parabolas on these axes below.

Input	Output		
x	$f(x)$	$g(x)$	$h(x)$
-6			
-5			
-4			
-3			
-2			
-1			
0			
1			
2			
3			
4			
5			
6			

5B. Look back at both the graphs and the table of values from Problem 5A. What do you notice about the relationship between the output values of the functions

$$
f(x), \quad g(x)=f(x+2), \quad \text { and } \quad h(x)=f(x-3)
$$

5C. Make a conjecture (a mathematical guess) about what happens in the following scenario:

Assume we have a function $f(x)$ and a positive constant $c>0$. Suppose we define functions

$$
g(x)=f(x+c) \quad \text { and } \quad h(x)=f(x-c)
$$

What is the relationship between $f(x), g(x)$, and $h(x)$?

2. HORIZONTAL SHIFTS OF AN ABSOLUTE VALUE FUNCTION

2A. Let's test your conjecture from Problem 1C on a different type of function. Consider the following absolute value functions
$f(x)=|x|$,
$g(x)=f(x+4)$,
$h(x)=f(x-3)$

For each function, specifically identify the value of positive constant $c>0$. Then, create a table of values and graph the resulting curves on these axes below

Input	Output		
x	$f(x)$	$g(x)$	$h(x)$
-6			
-5			
-4			
-3			
-2			
-1			
0			
1			
2			
3			
4			
5			
6			

6B. Look back at both the graphs and the table of values from Problem 6A. What do you notice about the relationship between the output values of the functions

$$
f(x), \quad g(x)=f(x+4), \quad h(x)=f(x-3)
$$

6C. Revise and update your conjecture (a mathematical guess) about what happens in the following scenario:

Assume we have a function $f(x)$ and a positive constant $c>0$. Suppose we define functions

$$
g(x)=f(x+c) \quad \text { and } \quad h(x)=f(x-c)
$$

What is the relationship between $f(x), g(x)$, and $h(x)$? Try to put this in both nerdy mathematical language and abuelita language

