Name : $\qquad$ (c) Jeffrey A. Anderson $\qquad$

Math 105 Skill Quiz 5, Version A
Lesson 11, 12, 13, 14, and 15

Free Response: Solve each of the following problems. Show your work and box your final answer.
(3) 1. Solve the following rational equation. Show your work:

$$
x-\frac{2 x}{x+3}=\frac{6}{x+3}
$$

(3) 2. Simplify using rules of radicals: $\sqrt[3]{n^{4}}$

3 3. Simplify each expression below as much as possible. Show your work.

$$
\frac{2 t}{t^{2}-1}+\frac{-1}{t-1}
$$

3 4. In your own words, explain the inverse operation for rational equations. Then, explain how to use this inverse to rational equations (Hint: see problem 3 above.)

3 5. Simplify the following expression. Show your work. $\sqrt[8]{a^{11}} \cdot \sqrt[8]{a^{5}}$
(3) 6. Simplify the following expression. Show your work. $\frac{\sqrt{12 w^{7} y}}{4 \sqrt{3 w^{3} y^{4}}}$
7. Solve the following equation. Show your work.

$$
3+\sqrt[3]{y-3}=5
$$

2 8. In your own words, explain the inverse operations for power expressions:

$$
\sqrt[2]{x^{2}}=|x|, \quad \sqrt[3]{x^{3}}=x
$$

Explain why we use an absolute value to take the inverse of $x^{2}$ using a square root. Explain why no absolute value sign is necessary when we take the inverse of $x^{3}$ using a cube root. (Hint: see problem 8.)

